
Talking about FP with Hamming Codes Problem

This post was originally written in Chinese and published on CSDN.

Problem Link

The problem asks to find the lexicographically smallest n numbers such that the hamming distance between
any two numbers is at least d.

Hamming distance can be calculated using XOR. 1^0=1, 0^1=1, 0^0=0, 1^1=0. So, XORing two numbers will
result in a number where the set bits represent the differing bits. We can then count the number of set bits
in the result.

I made a mistake once because the output requires 10 numbers per line, with the last line potentially having
fewer than 10. My initial output had a trailing space after the last number on the last line, followed by a
newline.

I think this is a pretty good Functional Programming style code. The benefit is that it’s more structured,
making main act like a top-level in Lisp or other functional languages.

This way, I don’t need to create a new cpp file to test unfamiliar functions or debug individual functions. I
can just comment out deal() and use main as a top-level REPL (read-print-eval-loop).

Lisp also taught me to program as functionally as possible, FP! This way, each function can be extracted
and debugged separately. The semantics are also clearer. For example:

hamming(0, 7, 2) means to check if the binary representations of 0 and 7 differ by at least 2 bits. 7 is 111,
so they differ by 3 bits, and the function returns true.

So, I can comment out deal() and add hamming(0, 7, 2) to test this function independently.

AC Code:

/*

{

ID: lzwjava1

PROG: hamming

LANG: C++

}

*/

#include<cstdio>

#include<cstring>

#include<math.h>

#include<stdlib.h>

#include<algorithm>
1

https://www.luogu.com.cn/problem/P1461

#include<ctime>

using namespace std;

const int maxn=1000;

bool hamming(int a,int b,int d)

{

int c=a^b;

int cnt=0;

for(int i=0;i<=30;i++)

{

if((1<<i) & c)

{

cnt++;

if(cnt>=d) return true;

}

}

return false;

}

void printArr(int *A,int n)

{

for(int i=0;i<n;i++)

{

printf("%d",A[i]);

if((i+1)%10==0 || (i==n-1)) printf("\n");

else printf(" ");

}

}

bool atLesat(int *A,int cur,int i,int d)

{

for(int j=0;j<cur;j++)

if(!hamming(A[j],i,d))

return false;

return true;

}

void dfs(int *A,int cur,int n,int d)

{

if(cur==n)

2

{

printArr(A,n);

return;

}

int st=(cur==0? 0: A[cur-1]+1);

for(int i=st;;i++)

{

if(atLesat(A,cur,i,d))

{

A[cur]=i;

dfs(A,cur+1,n,d);

return;

}

}

}

void deal()

{

int n,b,d;

scanf("%d%d%d",&n,&b,&d);

int A[n];

dfs(A,0,n,d);

}

int main()

{

freopen("hamming.in","r",stdin);

freopen("hamming.out","w",stdout);

deal();

//printf("%.2lf\n",(double)clock()/CLOCKS_PER_SEC);

return 0;

}

/*

*/

3

	Talking about FP with Hamming Codes Problem

