Trying Out Rust Programming

Rust is a relatively popular programming language in recent years. In 2006, an employee at Mozilla started
a personal project, which later received company support and was released in 2010. This project is called

Rust.

Let’ s start by running our first Rust program. Visit the official website to see how to get the program

running.
The official website provides a script:
curl --proto '=https' --tlsvl.2 -sSf https://sh.rustup.rs | sh

On a Mac, you can also use the Mac system’ s package management tool Homebrew to install it. Run the

command:

brew install rust

Here, I’ 11 use Homebrew to install Rust. While it” s installing, let’ s continue exploring the official website.
Next, we see Cargo mentioned on the website. Cargo is Rust’ s build and package management tool.

The official website states:

e Build your project with cargo build
e Run your project with cargo run

e Test your project with cargo test
These commands show us how to build, run, and test a Cargo program.
Run:
brew install rust
The output is:

==> Downloading https://homebrew.bintray.com/bottles/rust-1.49.0_1.big_sur.bottle.tar.gz
==> Downloading from https://d29vzk4ow07wi7.cloudfront.net/5a238d58c3fa775fed4e12ad74109deff54a82a06ch6
U HEEHEEEEEEEEEEHEEEEEER AR Y 100,07,
==> Pouring rust-1.49.0_1.big_sur.bottle.tar.gz
==> Caveats
Bash completion has been installed to:
/usr/local/etc/bash_completion.d
==> Summary

/usr/local/Cellar/rust/1.49.0_1: 15,736 files, 606.2MB

This means the installation was successful.



When running cargo in the terminal, the output is as follows:

Rust's package manager

USAGE:
cargo [OPTIONS] [SUBCOMMAND]

OPTIONS:
-V, —-version Print version info and exit
--list List installed commands
--explain <CODE> Run “rustc --explain CODE"
-v, ——verbose Use verbose output (-vv very verbose/build.rs output)
-q, ——quiet No output printed to stdout
—--color <WHEN> Coloring: auto, always, never
--frozen Require Cargo.lock and cache are up to date
--locked Require Cargo.lock is up to date
--offline Run without accessing the network
—-Z <FLAG>... Unstable (nightly-only) flags to Cargo, see 'cargo -Z help' for details
-h, --help Prints help information

Some common cargo commands are (see all commands with --list):

build, b Compile the current package

check, c Analyze the current package and report errors, but don't build object files
clean Remove the target directory

doc Build this package's and its dependencies' documentation
new Create a new cargo package

init Create a new cargo package in an existing directory

run, r Run a binary or example of the local package

test, t Run the tests

bench Run the benchmarks

update Update dependencies listed in Cargo.lock

search Search registry for crates

publish Package and upload this package to the registry

install Install a Rust binary. Default location is $HOME/.cargo/bin

uninstall Uninstall a Rust binary

See 'cargo help <command>' for more information on a specific command.



No need to understand all the commands. Just knowing the commonly used ones is enough. The build and

run commands are crucial.
Continuing with the official documentation:

Let’ s write a small application with our new Rust development enviromment. To start, we' 11 use Cargo

cargo new hello-rust

This will generate a new directory called hello-rust with the following files:

hello-rust
|- Cargo.toml
|- src

|- main.rs

Cargo.toml is the manifest file for Rust. It’ s where you keep metadata for your project, as well as de

src/main.rs is where we 11 write our application code.
This explains how to create a project. Let’ s proceed.

$ cargo new hello-rust

Created binary (application) “hello-rust” package
We’ 11 use VSCode to open the project.
main.rs:

fn main() {

println! ("Hello, world!");

Next, we naturally want to build and run the program.

$ cargo build

error: could not find “Cargo.toml”™ in ~/Users/lzw/ideas/curious-courses/program/run/rust” or any parent

An error occurred. Why? This indicates that Cargo can only run in the project’ s directory. So, navigate

to the subdirectory by running cd hello-rust.

Now, let” s see what happens if we run it directly.



$ cargo run

Compiling hello-rust v0.1.0 (/Users/lzw/ideas/curious-courses/program/run/rust/hello-rust)
Finished dev [unoptimized + debuginfol target(s) in 4.43s
Running “target/debug/hello-rust”
Hello, world!

Success! The string was output, and the program is working.
Let’ s try modifying the program.

fn main() {

println! (2+3);

After running cargo run, the output was:

Compiling hello-rust v0.1.0 (/Users/lzw/ideas/curious-courses/program/run/rust/hello-rust)
error: format argument must be a string literal
--> src/main.rs:2:14
|
2 | println! (2+3);

[
help: you might be missing a string literal to format with

|
2 | println! ("{}", 2+3);
I e

error: aborting due to previous error

error: could not compile “hello-rust~

To learn more, run the command again with --verbose.

We haven’ t learned any Rust syntax yet. Our intuitive code modification caused an error. The error

message was helpful and suggested how to fix it.

fn main() {

println! ("{}", 2+3);



This time, it worked, and it output 5.
Now, what about the build command?

$ cargo build

Finished dev [unoptimized + debuginfo] target(s) in 0.00s

Why have a build command? Because sometimes we just want to generate an executable without running
it. For large programs, execution can be time-consuming. We might want to generate the executable locally

and then transfer it to a remote server for execution.

We’ ve successfully run a Rust program. Next, we’ 1l familiarize ourselves with more Rust syntax and find
the corresponding symbols for concepts like variables, functions, function calls, and expressions as discussed

. “ . . n
in "Decoding Computer Science.

Exercise

e Try using Rust programming on your computer as described above.

o After practicing, submit a summary or additions to this article within 100 words.




