
Let Zsh Display Proxy Settings Before Running Network Com-

mands

Living in China or working within companies that use VPNs and proxies can complicate software development.

Forgetting to configure these settings often leads to connectivity issues. To streamline your workflow, I

created a simple Zsh script with the help of ChatGPT that automatically displays your proxy settings when

you run specific network-dependent commands.

Why Display Proxy Settings?

Proxies and VPNs are essential for accessing external resources securely. Displaying your proxy settings

before executing network-dependent commands helps you quickly identify and troubleshoot connectivity

issues.

The Script

This script utilizes Zsh’s preexec function to check if the upcoming command is network-dependent. If it

is and proxy environment variables are set, it displays the current proxy settings.

Function to check and display proxy settings before certain commands

preexec() {

Define network-dependent commands

local network_commands=(

"gpa"

"git"

"ssh"

"scp"

"sftp"

"rsync"

"curl"

"wget"

"apt"

"yum"

"dnf"

"npm"

"yarn"

"pip"

1

"pip3"

"gem"

"cargo"

"docker"

"kubectl"

"ping"

"traceroute"

"netstat"

"ss"

"ip"

"ifconfig"

"dig"

"nslookup"

"nmap"

"telnet"

"ftp"

"nc"

"tcpdump"

"adb"

"bundle"

"brew"

"cpanm"

"bundle exec jekyll"

"make"

Add more commands as needed

)

Extract the first word (command) from the command line

local cmd

cmd=$(echo "$1" | awk '{print $1}')

Function to display proxy variables

display_proxy() {

echo -e "\n� **Proxy Settings Detected:**"

[-n "$HTTP_PROXY"] && echo " - HTTP_PROXY: $HTTP_PROXY"

2

[-n "$http_proxy"] && echo " - http_proxy: $http_proxy"

[-n "$HTTPS_PROXY"] && echo " - HTTPS_PROXY: $HTTPS_PROXY"

[-n "$https_proxy"] && echo " - https_proxy: $https_proxy"

[-n "$ALL_PROXY"] && echo " - ALL_PROXY: $ALL_PROXY"

[-n "$all_proxy"] && echo " - all_proxy: $all_proxy"

echo ""

}

Check if the command is network-dependent

for network_cmd in "${network_commands[@]}"; do

if [["$1" == "$network_cmd"*]]; then

if [-n "$HTTP_PROXY"] || [-n "$http_proxy"] || \

[-n "$HTTPS_PROXY"] || [-n "$https_proxy"] || \

[-n "$ALL_PROXY"] || [-n "$all_proxy"]; then

display_proxy

fi

break

fi

done

}

Setting Up the Script in Zsh

1. Open Your .zshrc File

Use your preferred text editor to open the .zshrc configuration file. For example:

nano ~/.zshrc

2. Add the preexec Function

Paste the script above at the end of the file.

3. Save and Close

Press CTRL + O to save and CTRL + X to exit.

3

4. Apply the Changes

Reload your .zshrc to apply the new configuration immediately:

source ~/.zshrc

Testing the Setup

1. With Proxy Enabled

Set a proxy variable temporarily and run a network-dependent command using pip:

export HTTP_PROXY="http://127.0.0.1:7890"

pip install selenium beautifulsoup4 urllib3

Expected Output:

� **Proxy Settings Detected:**

- HTTP_PROXY: http://127.0.0.1:7890

- http_proxy: 127.0.0.1:7890

- HTTPS_PROXY: 127.0.0.1:7890

- https_proxy: 127.0.0.1:7890

- ALL_PROXY: 127.0.0.1:7890

- all_proxy: 127.0.0.1:7890

Collecting selenium

Downloading selenium-4.x.x-py2.py3-none-any.whl (xxx kB)

Collecting beautifulsoup4

Downloading beautifulsoup4-4.x.x-py3-none-any.whl (xxx kB)

Collecting urllib3

Downloading urllib3-1.x.x-py2.py3-none-any.whl (xxx kB)

...

2. Without Proxy Enabled

Unset the proxy variable and run the same pip command:

unset HTTP_PROXY

pip install selenium beautifulsoup4 urllib3

Expected Output:

Collecting selenium

4

Downloading selenium-4.x.x-py2.py3-none-any.whl (xxx kB)

Collecting beautifulsoup4

Downloading beautifulsoup4-4.x.x-py3-none-any.whl (xxx kB)

Collecting urllib3

Downloading urllib3-1.x.x-py2.py3-none-any.whl (xxx kB)

...

(No proxy notification should appear.)

3. Non-Network Command

Run a local command like ls:

ls

Expected Output:

[List of files and directories]

(No proxy notification should appear.)

Customization

• Extend network_commands: Add any additional network-dependent commands to the network_commands

array.

• Handle Aliases: Ensure that any aliases for network-dependent commands are included in the

network_commands list.

alias gpa='git push all'

Add "gpa" to the network_commands array to trigger proxy notifications when using this alias.

• Enhance Visibility with Colors:

For better visibility, especially in cluttered terminals, you can add color to the proxy notifications:

Add color codes at the top of your .zshrc

GREEN='\033[0;32m'

NC='\033[0m' # No Color

display_proxy() {

echo -e "\n${GREEN}� **Proxy Settings Detected:**${NC}"

[-n "$HTTP_PROXY"] && echo " - HTTP_PROXY: $HTTP_PROXY"

5

[-n "$http_proxy"] && echo " - http_proxy: $http_proxy"

[-n "$HTTPS_PROXY"] && echo " - HTTPS_PROXY: $HTTPS_PROXY"

[-n "$https_proxy"] && echo " - https_proxy: $https_proxy"

[-n "$ALL_PROXY"] && echo " - ALL_PROXY: $ALL_PROXY"

[-n "$all_proxy"] && echo " - all_proxy: $all_proxy"

echo ""

}

Conclusion

Managing proxy settings is crucial for smooth software development in restricted network environments.

This Zsh script ensures you’re always informed about your proxy configurations when running commands

that require network access, enhancing your workflow and troubleshooting efficiency.

Happy Coding! �

6

