
Analyze Java Dependencies

To address your query, I’ll modify the provided Python script to generate a dependency graph for Java
classes, where dependencies are grouped by a specified “level”of the package hierarchy. For example, if
level=1, packages are grouped at the top level (e.g., “org”), and if level=2, they are grouped at the sec-
ond level (e.g., “org.springframework”). This means that before analyzing dependencies, we accumulate
classes into groups based on the first level parts of their package names, and the graph will show depen-
dencies between these groups rather than individual classes.

Below is the modified script, followed by an explanation of the changes and how it meets your requirements.

Modified Script

import os

import sys

import re

from collections import defaultdict

def get_package(file_path):

"""

Extract the package name from a .java file.

Args:

file_path (str): Path to the .java file.

Returns:

str: The package name, or None if not found.

"""

try:

with open(file_path, 'r', encoding='utf-8') as f:

for line in f:

match = re.search(r'^\s*package\s+([\w.]+);', line)

if match:

return match.group(1)

except Exception as e:

print(f"Warning: Could not read {file_path}: {e}")

return None

def get_specific_imports(file_path):

"""

Extract specific class imports from a .java file, excluding wildcard imports.
1

Args:

file_path (str): Path to the .java file.

Returns:

list: List of fully qualified imported class names.

"""

imports = []

try:

with open(file_path, 'r', encoding='utf-8') as f:

for line in f:

match = re.search(r'^\s*import\s+([\w.]+);', line)

if match:

imp = match.group(1)

Exclude wildcard imports (e.g., import java.util.*;)

if not imp.endswith('.*'):

imports.append(imp)

except Exception as e:

print(f"Warning: Could not read {file_path}: {e}")

return imports

def get_package_group(full_class_name, level):

"""

Get the package group based on the first 'level' parts of the package name.

Args:

full_class_name (str): Fully qualified class name (e.g., "org.springframework.boot.App").

level (int): Number of package levels to include (e.g., 1 for "org", 2 for "org.springframework").

Returns:

str: The package group (e.g., "org" or "org.springframework").

"""

package = '.'.join(full_class_name.split('.')[:-1]) # Extract package, excluding class name

parts = package.split('.')

if len(parts) <= level:

return package # Use full package if it has fewer or equal parts than level

else:

return '.'.join(parts[:level]) # Use first 'level' parts

if __name__ == '__main__':

2

Check for command-line arguments: root_directory and level

if len(sys.argv) != 3:

print("Usage: python script.py <root_directory> <level>")

sys.exit(1)

root_dir = sys.argv[1]

try:

level = int(sys.argv[2])

if level < 1:

raise ValueError

except ValueError:

print("Error: level must be a positive integer")

sys.exit(1)

all_classes = set()

First pass: Collect all fully qualified class names in the project

for root, dirs, files in os.walk(root_dir):

for file in files:

if file.endswith('.java'):

file_path = os.path.join(root, file)

package = get_package(file_path)

if package:

class_name = file.replace('.java', '')

full_class_name = f"{package}.{class_name}"

all_classes.add(full_class_name)

Store dependencies between package groups

group_dependencies = set()

Second pass: Analyze dependencies based on package groups

for root, dirs, files in os.walk(root_dir):

for file in files:

if file.endswith('.java'):

file_path = os.path.join(root, file)

package = get_package(file_path)

if package:

class_name = file.replace('.java', '')

full_class_name = f"{package}.{class_name}"

importer_group = get_package_group(full_class_name, level)

3

imports = get_specific_imports(file_path)

for imp in imports:

Only include dependencies on classes within the project

Exclude self-dependencies

if imp in all_classes and imp != full_class_name:

imported_group = get_package_group(imp, level)

if imported_group != importer_group:

group_dependencies.add((importer_group, imported_group))

Output the dependency graph in DOT format

print('digraph G {')

for from_group, to_group in sorted(group_dependencies):

print(f' "{from_group}" -> "{to_group}";')

print('}')

Explanation of Changes

1. Command-Line Arguments:

• Original: python script.py <root_directory>

• Modified: python script.py <root_directory> <level>

• Added support for a second argument, level, which specifies the package hierarchy level. The
script checks that exactly two arguments are provided and that level is a positive integer.

2. New Function: get_package_group:

• Added a function to compute the package group for a class based on the specified level.
• For a fully qualified class name (e.g., “org.springframework.boot.App”), it extracts the package
(“org.springframework.boot”), splits it into parts (“org”, “springframework”, “boot”), and takes
the first level parts:

– If level=1: Returns “org”.
– If level=2: Returns “org.springframework”.
– If the package has fewer parts than level (e.g., “com.example”with level=3), it returns the full
package (“com.example”).

3. Dependency Grouping:

• Original: Used defaultdict(set) to store dependencies between individual classes.
• Modified: Uses a set (group_dependencies) to store directed edges between package groups as
tuples (from_group, to_group).

• For each class:

– Computes its package group (importer_group) using get_package_group.
– For each specific import that is within the project (imp in all_classes) and not the class itself
(imp != full_class_name):

4

∗ Computes the imported class’s package group (imported_group).
∗ If the groups differ (imported_group != importer_group), adds an edge to group_dependencies.

• The set ensures uniqueness, so multiple dependencies between the same groups result in a single
edge.

4. DOT Output:

• Original: Printed edges between individual classes (e.g., “org.springframework.boot.App”->
“org.apache.commons.IOUtils”).

• Modified: Prints edges between package groups (e.g., “org.springframework”-> “org.apache”for
level=2).

• Edges are sorted for consistent output.

How It Meets Your Requirements

• Support for Levels: The script now accepts a level parameter to group packages before analyzing
dependencies.

• Level = 1: Groups all classes by their top-level package (e.g., “org”). For example, “org.springframework.boot.App”
and “org.apache.commons.IOUtils”both belong to the “org”group, so imports between them within
“org”are not shown as edges.

• Level = 2: Groups classes by the first two package levels (e.g., “org.springframework”). For exam-
ple, an import from “org.springframework.boot.App”to “org.apache.commons.IOUtils”creates an edge
from “org.springframework”to “org.apache”.

• Accumulate Packages Before Dependency Analysis: The script determines each class’s package
group based on level before analyzing its imports, ensuring dependencies are between groups, not
individual classes.

• Example Compliance: For your example edge:

– Original: "org.springframework.boot.web.servlet.server.Session" -> "org.springframework.boot.convert.DurationUnit"

– With level=2: Both classes are in “org.springframework”, so no edge is added (same group).
– With level=3: “org.springframework.boot.web”-> “org.springframework.boot.convert”, adding an
edge between these distinct groups.

Usage Examples

• Command: python script.py /path/to/project 1

– Groups: “org”, “com”, etc.
– Output might include: "org" -> "com" if a class in an “org”package imports a class in a “com”
package.

• Command: python script.py /path/to/project 2

– Groups: “org.springframework”, “org.apache”, etc.
– Output might include: "org.springframework" -> "org.apache".

5

Notes

• The script maintains the original behavior of only including intra-project dependencies (imports within
all_classes) and excluding wildcard imports and self-dependencies.

• Classes without a package declaration are skipped, consistent with the original script.
• The output is a directed graph in DOT format, viewable with tools like Graphviz.

This modified script should fully satisfy your request to group dependencies by package level hierarchy.

6

	Analyze Java Dependencies
	Modified Script
	Explanation of Changes
	How It Meets Your Requirements
	Usage Examples
	Notes

