Analyzing Java Packages

Based on your query, you want a script where, if the 1level parameter is 0 or not provided, it uses the
entire package name (all parts of it), essentially treating 1evel = 0 as “infinite”or “use all parts,”instead of
limiting it to a specific number of parts (like only the first part when level = 1). Below, I'll explain how this
can be implemented in a Python script that analyzes Java files to extract package names, and I'll provide a
complete solution tailored to your request.

Understanding the Requirement

* When 1level = 0 or not provided: Use the full package name as extracted from Java import state-
ments (e.g., java.util Or com.google.common.eventbus), without truncating it.

* When level > 0: Truncate the package name to the first 1evel parts (e.g., for com.google . common. eventbus,
level = 2 would give com.google).

* The script should still process Java files, extract package names from import statements, and handle
edge cases appropriately.

Solution Approach

1. Argument Parsing:

 If only the root directory is provided (e.g., python script.py /path/to/dir), set level = 0, meaning
use the full package name.

* If level is provided (e.g., python script.py /path/to/dir 2), use it to truncate the package name,
ensuring it’s a non-negative integer.

» Exit with an error if the arguments are invalid.
2. Package Extraction:

* Extract the package name from import statements (e.g., import java.util.ArrayList; Yyields
java.util).

¢ Use Java naming conventions: packages are typically lowercase, and class names start with up-
percase.

3. Package Truncation Logic:

e If 1evel = 0, add the full package name to the result set.

* If level > 0, split the package name by dots (.) and take the first 1level parts.
4. Logging and Output:

¢ Clearly indicate whether full package names or truncated ones are being used.
e List all unique packages found.

Implementation

Here’s the complete Python script that meets your requirements:

import os

import sys

def find_java_files(root_dir):

mmn

Recursively find all .java files in the given directory and its subdirectories.

Args:

root_dir (str): The root directory to start the search from.

Yields:
str: The full path to each .java file.
for dirpath, dirnames, filenames in os.walk(root_dir):
print (f"[INFO] Entering directory: {dirpath}")
for filename in filenames:
if filename.endswith('.java'):

yield os.path.join(dirpath, filename)

def extract_package (import_statement) :

nnn

Extract the package name from an import statement.

Assumes package names are lowercase and stops at class names (uppercase) or wildcards (*).

Args:

wmport_statement (str): The import statement line from a Java file.

Returns:
str: The package name, or empty string if not determined.
parts = import_statement.split()
if parts[0] == 'import':
parts = parts[i:]
if parts[0] == 'static':
parts = parts[1:]

import_path = ' '.join(parts).strip(';').strip(Q)
2

identifiers = import_path.split('."')
for i, ident in enumerate(identifiers):
if ident == '#' or (ident and ident[0].isupper()):
package_parts = identifiers[:i]
break
else:
package_parts = []
package = '.'.join(package_parts)
return package
if __name__ == '_main__':
Parse command-line arguments
if len(sys.argv) ==
root_dir = sys.argv[i]
level = 0 # No level provided, use full package names
elif len(sys.argv) == 3:
root_dir = sys.argv[1]
try:
level = int(sys.argv[2])
if level < O:
raise ValueError
except ValueError:
print (" [ERROR] Level must be a non-negative integer.")
sys.exit (1)
else:
print ("Usage: python script.py <root_directory> [levell")

sys.exit (1)

Verify the directory exists
if not os.path.isdir(root_dir):
print (f"[ERROR] The specified path is not a directory: {root_dirl}")

sys.exit (1)

Log the start of the analysts
if level == 0:

print (£" [INFO] Starting analysis of directory: {root_dir} with full package names.")
else:

print (f"[INFO] Starting analysis of directory: {root_dir} at level: {levell}")

Inttialize variables

packages = set()
total_files = 0

error_files = 0

Process Java files
for java_file in find_java_files(root_dir):
print (£" [INFO] Processing file: {java_file}")
try:
with open(java_file, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if line.startswith('import'):
package = extract_package(line)
if package:
if level == 0:
Use the full package name
packages.add (package)
else:
Truncate to the first 'level' parts
parts = package.split('.")
truncated_package = '.'.join(parts[:levell)
packages.add(truncated_package)
total_files += 1
except Exception as e:
print (£" [ERROR] Could not read file {java_filel}: {el}")
error_files += 1

continue

Print summary
print (f"[INFO] Total Java files attempted: {total_files + error_files}")
print (f"[INFO] Successfully processed: {total_filesl}")
print (£" [INFO] Files with errors: {error_filesl}")
if level == 0:
print (f"[INFO] Total unique full packages: {len(packages)l}")
else:

print (£" [INFO] Total unique packages at level {level}: {len(packages)l}")

Print results
if packages:

if level ==

print (" [INFO] Analysis complete. Printing unique full packages:")

else:

print (f"[INFO] Analysis complete. Printing unique packages at level {levell}:")

for package in sorted(packages):

print (package)

else:

print (" [INFO] No packages found.")

How It Works

* Running the Script:

- python script.py /path/to/java/project: Analyzes all . javafiles in the directory and uses full pack-

age names (level = 0).

- python script.py /path/to/java/project 2: Truncates package names to the first 2 parts (e.qg.,

com.google.common.eventbus becomes com.google).

« Example Output: Suppose you have a Java file with:

import java.util.ArrayList;

import com.google.common.eventbus.EventBus;

- With 1level = 0 (or no level provided):

[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]

Starting analysis of directory: /path/to/java/project with full package names.
Entering directory: /path/to/java/project

Processing file: /path/to/java/project/MyFile.java

Total Java files attempted: 1

Successfully processed: 1

Files with errors: O

Total unique full packages: 2

Analysis complete. Printing unique full packages:

com.google.common.eventbus

java.util

- With 1level = 2:

[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]

Starting analysis of directory: /path/to/java/project at level: 2
Entering directory: /path/to/java/project

Processing file: /path/to/java/project/MyFile.java

Total Java files attempted: 1

Successfully processed: 1

Files with errors: 0O

Total unique packages at level 2: 2
5

[INFO] Analysis complete. Printing unique packages at level 2:
com.google

java.util

* Key Features:

Full Package Names: When level = 0 or not passed, it uses the entire package name as ex-

tracted (e.g., java.util, com.google.common.eventbus).

Truncation: When level > 0, it takes the first 1level parts.

Error Handling: Checks for valid directory and non-negative level.

Uniqueness: Stores packages in a set to avoid duplicates.

Edge Cases Handled

* Missing Level: Defaults to level = 0, using full package names.

Invalid Level: Exits with an error if 1evel is negative or not an integer.

Short Packages: If a package has fewer parts than level (e.g., java with level = 2), it uses the full
package (java).
« Empty Imports: Skips lines where no package is extracted.

This script fully satisfies your requirement: when level = 0 or not provided, it uses all parts of the package

name, effectively treating it as “infinite”in terms of parts used.

	Analyzing Java Packages
	Understanding the Requirement
	Solution Approach
	Implementation
	How It Works
	Edge Cases Handled

