Analyzing Java Packages

Based on your query, you want a script where, if the 1level parameter is 0 or not provided, it uses the
entire package name (all parts of it), essentially treating 1evel = 0 as “infinite”or “use all parts,”instead of
limiting it to a specific number of parts (like only the first part when level = 1). Below, I'll explain how this
can be implemented in a Python script that analyzes Java files to extract package names, and I'll provide a
complete solution tailored to your request.

Understanding the Requirement

* When 1level = 0 or not provided: Use the full package name as extracted from Java import state-
ments (e.g., java.util Or com.google.common.eventbus), without truncating it.

* When level > 0: Truncate the package name to the first 1evel parts (e.g., for com.google . common. eventbus,
level = 2 would give com.google).

* The script should still process Java files, extract package names from import statements, and handle
edge cases appropriately.

Solution Approach

1. Argument Parsing:

 If only the root directory is provided (e.g., python script.py /path/to/dir), set level = 0, meaning
use the full package name.

* If level is provided (e.g., python script.py /path/to/dir 2), use it to truncate the package name,
ensuring it’s a non-negative integer.

» Exit with an error if the arguments are invalid.
2. Package Extraction:

* Extract the package name from import statements (e.g., import java.util.ArrayList; Yyields
java.util).

¢ Use Java naming conventions: packages are typically lowercase, and class names start with up-
percase.

3. Package Truncation Logic:

e If 1evel = 0, add the full package name to the result set.

* If level > 0, split the package name by dots (.) and take the first 1level parts.
4. Logging and Output:

¢ Clearly indicate whether full package names or truncated ones are being used.
e List all unique packages found.



Implementation

Here’s the complete Python script that meets your requirements:

import os

import sys

def find_java_files(root_dir):

mmn

Recursively find all .java files in the given directory and its subdirectories.

Args:

root_dir (str): The root directory to start the search from.

Yields:
str: The full path to each .java file.
for dirpath, dirnames, filenames in os.walk(root_dir):
print (f"[INFO] Entering directory: {dirpath}")
for filename in filenames:
if filename.endswith('.java'):

yield os.path.join(dirpath, filename)

def extract_package (import_statement) :

nnn

Extract the package name from an import statement.

Assumes package names are lowercase and stops at class names (uppercase) or wildcards (*).

Args:

wmport_statement (str): The import statement line from a Java file.

Returns:
str: The package name, or empty string if not determined.
parts = import_statement.split()
if parts[0] == 'import':
parts = parts[i:]
if parts[0] == 'static':
parts = parts[1:]

import_path = ' '.join(parts).strip(';').strip(Q)
2



identifiers = import_path.split('."')
for i, ident in enumerate(identifiers):
if ident == '#' or (ident and ident[0].isupper()):
package_parts = identifiers[:i]
break
else:
package_parts = []
package = '.'.join(package_parts)
return package
if __name__ == '_main__':
# Parse command-line arguments
if len(sys.argv) ==
root_dir = sys.argv[i]
level = 0 # No level provided, use full package names
elif len(sys.argv) == 3:
root_dir = sys.argv[1]
try:
level = int(sys.argv[2])
if level < O:
raise ValueError
except ValueError:
print (" [ERROR] Level must be a non-negative integer.")
sys.exit (1)
else:
print ("Usage: python script.py <root_directory> [levell")

sys.exit (1)

# Verify the directory exists
if not os.path.isdir(root_dir):
print (f"[ERROR] The specified path is not a directory: {root_dirl}")

sys.exit (1)

# Log the start of the analysts
if level == 0:

print (£" [INFO] Starting analysis of directory: {root_dir} with full package names.")
else:

print (f"[INFO] Starting analysis of directory: {root_dir} at level: {levell}")

# Inttialize variables



packages = set()
total_files = 0

error_files = 0

# Process Java files
for java_file in find_java_files(root_dir):
print (£" [INFO] Processing file: {java_file}")
try:
with open(java_file, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if line.startswith('import'):
package = extract_package(line)
if package:
if level == 0:
# Use the full package name
packages.add (package)
else:
# Truncate to the first 'level' parts
parts = package.split('.")
truncated_package = '.'.join(parts[:levell)
packages.add(truncated_package)
total_files += 1
except Exception as e:
print (£" [ERROR] Could not read file {java_filel}: {el}")
error_files += 1

continue

# Print summary
print (f"[INFO] Total Java files attempted: {total_files + error_files}")
print (f"[INFO] Successfully processed: {total_filesl}")
print (£" [INFO] Files with errors: {error_filesl}")
if level == 0:
print (f"[INFO] Total unique full packages: {len(packages)l}")
else:

print (£" [INFO] Total unique packages at level {level}: {len(packages)l}")

# Print results
if packages:

if level ==



print (" [INFO] Analysis complete. Printing unique full packages:")

else:

print (f"[INFO] Analysis complete. Printing unique packages at level {levell}:")

for package in sorted(packages):

print (package)

else:

print (" [INFO] No packages found.")

How It Works

* Running the Script:

- python script.py /path/to/java/project: Analyzes all . javafiles in the directory and uses full pack-

age names (level = 0).

- python script.py /path/to/java/project 2: Truncates package names to the first 2 parts (e.qg.,

com.google.common.eventbus becomes com.google).

« Example Output: Suppose you have a Java file with:

import java.util.ArrayList;

import com.google.common.eventbus.EventBus;

- With 1level = 0 (or no level provided):

[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]

Starting analysis of directory: /path/to/java/project with full package names.
Entering directory: /path/to/java/project

Processing file: /path/to/java/project/MyFile.java

Total Java files attempted: 1

Successfully processed: 1

Files with errors: O

Total unique full packages: 2

Analysis complete. Printing unique full packages:

com.google.common.eventbus

java.util

- With 1level = 2:

[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]

Starting analysis of directory: /path/to/java/project at level: 2
Entering directory: /path/to/java/project

Processing file: /path/to/java/project/MyFile.java

Total Java files attempted: 1

Successfully processed: 1

Files with errors: 0O

Total unique packages at level 2: 2
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[INFO] Analysis complete. Printing unique packages at level 2:
com.google

java.util

* Key Features:

Full Package Names: When level = 0 or not passed, it uses the entire package name as ex-

tracted (e.g., java.util, com.google.common.eventbus).

Truncation: When level > 0, it takes the first 1level parts.

Error Handling: Checks for valid directory and non-negative level.

Uniqueness: Stores packages in a set to avoid duplicates.

Edge Cases Handled

* Missing Level: Defaults to level = 0, using full package names.

Invalid Level: Exits with an error if 1evel is negative or not an integer.

Short Packages: If a package has fewer parts than level (e.g., java with level = 2), it uses the full
package (java).
« Empty Imports: Skips lines where no package is extracted.

This script fully satisfies your requirement: when level = 0 or not provided, it uses all parts of the package

name, effectively treating it as “infinite”in terms of parts used.
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