
Analyzing Java Packages

Based on your query, you want a script where, if the level parameter is 0 or not provided, it uses the
entire package name (all parts of it), essentially treating level = 0 as “infinite”or “use all parts,”instead of
limiting it to a specific number of parts (like only the first part when level = 1). Below, I’ll explain how this
can be implemented in a Python script that analyzes Java files to extract package names, and I’ll provide a
complete solution tailored to your request.

Understanding the Requirement

• When level = 0 or not provided: Use the full package name as extracted from Java import state-
ments (e.g., java.util or com.google.common.eventbus), without truncating it.

• When level > 0: Truncate the package name to the first level parts (e.g., for com.google.common.eventbus,
level = 2 would give com.google).

• The script should still process Java files, extract package names from import statements, and handle
edge cases appropriately.

Solution Approach

1. Argument Parsing:

• If only the root directory is provided (e.g., python script.py /path/to/dir), set level = 0, meaning
use the full package name.

• If level is provided (e.g., python script.py /path/to/dir 2), use it to truncate the package name,
ensuring it’s a non-negative integer.

• Exit with an error if the arguments are invalid.

2. Package Extraction:

• Extract the package name from import statements (e.g., import java.util.ArrayList; yields
java.util).

• Use Java naming conventions: packages are typically lowercase, and class names start with up-
percase.

3. Package Truncation Logic:

• If level = 0, add the full package name to the result set.
• If level > 0, split the package name by dots (.) and take the first level parts.

4. Logging and Output:

• Clearly indicate whether full package names or truncated ones are being used.
• List all unique packages found.

1

Implementation

Here’s the complete Python script that meets your requirements:

import os

import sys

def find_java_files(root_dir):

"""

Recursively find all .java files in the given directory and its subdirectories.

Args:

root_dir (str): The root directory to start the search from.

Yields:

str: The full path to each .java file.

"""

for dirpath, dirnames, filenames in os.walk(root_dir):

print(f"[INFO] Entering directory: {dirpath}")

for filename in filenames:

if filename.endswith('.java'):

yield os.path.join(dirpath, filename)

def extract_package(import_statement):

"""

Extract the package name from an import statement.

Assumes package names are lowercase and stops at class names (uppercase) or wildcards (*).

Args:

import_statement (str): The import statement line from a Java file.

Returns:

str: The package name, or empty string if not determined.

"""

parts = import_statement.split()

if parts[0] == 'import':

parts = parts[1:]

if parts[0] == 'static':

parts = parts[1:]

import_path = ' '.join(parts).strip(';').strip()
2

identifiers = import_path.split('.')

for i, ident in enumerate(identifiers):

if ident == '*' or (ident and ident[0].isupper()):

package_parts = identifiers[:i]

break

else:

package_parts = []

package = '.'.join(package_parts)

return package

if __name__ == '__main__':

Parse command-line arguments

if len(sys.argv) == 2:

root_dir = sys.argv[1]

level = 0 # No level provided, use full package names

elif len(sys.argv) == 3:

root_dir = sys.argv[1]

try:

level = int(sys.argv[2])

if level < 0:

raise ValueError

except ValueError:

print("[ERROR] Level must be a non-negative integer.")

sys.exit(1)

else:

print("Usage: python script.py <root_directory> [level]")

sys.exit(1)

Verify the directory exists

if not os.path.isdir(root_dir):

print(f"[ERROR] The specified path is not a directory: {root_dir}")

sys.exit(1)

Log the start of the analysis

if level == 0:

print(f"[INFO] Starting analysis of directory: {root_dir} with full package names.")

else:

print(f"[INFO] Starting analysis of directory: {root_dir} at level: {level}")

Initialize variables

3

packages = set()

total_files = 0

error_files = 0

Process Java files

for java_file in find_java_files(root_dir):

print(f"[INFO] Processing file: {java_file}")

try:

with open(java_file, 'r', encoding='utf-8') as f:

for line in f:

line = line.strip()

if line.startswith('import'):

package = extract_package(line)

if package:

if level == 0:

Use the full package name

packages.add(package)

else:

Truncate to the first 'level' parts

parts = package.split('.')

truncated_package = '.'.join(parts[:level])

packages.add(truncated_package)

total_files += 1

except Exception as e:

print(f"[ERROR] Could not read file {java_file}: {e}")

error_files += 1

continue

Print summary

print(f"[INFO] Total Java files attempted: {total_files + error_files}")

print(f"[INFO] Successfully processed: {total_files}")

print(f"[INFO] Files with errors: {error_files}")

if level == 0:

print(f"[INFO] Total unique full packages: {len(packages)}")

else:

print(f"[INFO] Total unique packages at level {level}: {len(packages)}")

Print results

if packages:

if level == 0:

4

print("[INFO] Analysis complete. Printing unique full packages:")

else:

print(f"[INFO] Analysis complete. Printing unique packages at level {level}:")

for package in sorted(packages):

print(package)

else:

print("[INFO] No packages found.")

How It Works

• Running the Script:

– python script.py /path/to/java/project: Analyzes all .java files in the directory and uses full pack-
age names (level = 0).

– python script.py /path/to/java/project 2: Truncates package names to the first 2 parts (e.g.,
com.google.common.eventbus becomes com.google).

• Example Output: Suppose you have a Java file with:

import java.util.ArrayList;

import com.google.common.eventbus.EventBus;

– With level = 0 (or no level provided):

[INFO] Starting analysis of directory: /path/to/java/project with full package names.

[INFO] Entering directory: /path/to/java/project

[INFO] Processing file: /path/to/java/project/MyFile.java

[INFO] Total Java files attempted: 1

[INFO] Successfully processed: 1

[INFO] Files with errors: 0

[INFO] Total unique full packages: 2

[INFO] Analysis complete. Printing unique full packages:

com.google.common.eventbus

java.util

– With level = 2:

[INFO] Starting analysis of directory: /path/to/java/project at level: 2

[INFO] Entering directory: /path/to/java/project

[INFO] Processing file: /path/to/java/project/MyFile.java

[INFO] Total Java files attempted: 1

[INFO] Successfully processed: 1

[INFO] Files with errors: 0

[INFO] Total unique packages at level 2: 2
5

[INFO] Analysis complete. Printing unique packages at level 2:

com.google

java.util

• Key Features:

– Full Package Names: When level = 0 or not passed, it uses the entire package name as ex-
tracted (e.g., java.util, com.google.common.eventbus).

– Truncation: When level > 0, it takes the first level parts.
– Error Handling: Checks for valid directory and non-negative level.
– Uniqueness: Stores packages in a set to avoid duplicates.

Edge Cases Handled

• Missing Level: Defaults to level = 0, using full package names.
• Invalid Level: Exits with an error if level is negative or not an integer.
• Short Packages: If a package has fewer parts than level (e.g., java with level = 2), it uses the full
package (java).

• Empty Imports: Skips lines where no package is extracted.

This script fully satisfies your requirement: when level = 0 or not provided, it uses all parts of the package
name, effectively treating it as “infinite”in terms of parts used.

6

	Analyzing Java Packages
	Understanding the Requirement
	Solution Approach
	Implementation
	How It Works
	Edge Cases Handled

