
WebSphere Liberty - Hello World Application

Here’s a simple example to run a “Hello World”application on your WebSphere Liberty server, assuming
you’ve already set it up with the javaee-8.0 feature enabled as per previous instructions. This example
uses a basic JSP (JavaServer Pages) file and deploys it using the dropins directory for simplicity.

Step-by-Step Guide

1. Create the Application Directory and File You’ll create a small web application by placing a JSP file
in the dropins directory of your Liberty server. The dropins directory allows Liberty to automatically detect
and deploy applications.

• Locate the dropins directory: Navigate to the dropins directory within your server’s folder. If your
Liberty installation is located at /opt/ibm/wlp and your server is named myServer, the path is:

/opt/ibm/wlp/usr/servers/myServer/dropins

Replace /opt/ibm/wlp with your actual Liberty installation directory and myServer with your server’s
name.

• Create an exploded WAR directory: Inside the dropins directory, create a directory named
myApp.war. The .war extension tells Liberty to treat this as a web application. Use this command:

mkdir -p /opt/ibm/wlp/usr/servers/myServer/dropins/myApp.war

• Create the index.jsp file: Inside myApp.war, create a file named index.jsp with the following content
to display “Hello World!”:

<html>

<body>

<h2>Hello World!</h2>

</body>

</html>

You can create it directly with a command like:

echo '<html><body><h2>Hello World!</h2></body></html>' > /opt/ibm/wlp/usr/servers/myServer/dropins/myApp.war/index.jsp

Alternatively, use a text editor to create index.jsp and save it in that location.

2. Start the Server (if Not Already Running) If your server isn’t running, you need to start it so it can
deploy and serve the application.

• Navigate to the bin directory: Go to the bin directory in your Liberty installation:
1



cd /opt/ibm/wlp/bin

• Start the server: Run the server in foreground mode to see the output directly:

./server run myServer

Alternatively, start it in the background:

./server start myServer

If the server is already running, skip this step—Liberty will detect the new application automatically.

3. Verify Application Deployment Liberty will deploy the myApp.war application automatically when it
detects it in the dropins directory.

• Check the console output: If you started the server in foreground mode, watch for a message like:

[AUDIT ] CWWKT0016I: Web application available (default_host): http://localhost:9080/myApp/

This confirms the application is deployed and available.

• Check logs (if running in background): If the server is running in the background, look in the log
file at:

/opt/ibm/wlp/usr/servers/myServer/logs/console.log

for the same deployment message.

4. Access the Application Now that the application is deployed, you can view it in a web browser.

• Open your browser: Navigate to:

http://localhost:9080/myApp/

The context root /myApp comes from the myApp.war directory name, and index.jsp is served by default
as a welcome file.

• Expected result: You should see a page displaying:

Hello World!

in large text.

2



Notes

• Port number: This example uses port 9080, the default HTTP port for Liberty. If you’ve configured a
different port, adjust the URL accordingly (e.g., http://localhost:YOUR_PORT/myApp/).

• Permissions: Ensure you have write permissions to the dropins directory.
• JSP support: The javaee-8.0 feature includes JSP support, so no additional configuration is needed.
• Troubleshooting: If the page doesn’t load, check the server logs at /opt/ibm/wlp/usr/servers/myServer/logs/messages.log

for errors, or ensure the server is running and the files are in the correct location.

This simple example demonstrates how to deploy and run a “Hello World”application on your WebSphere
Liberty server using the dropins directory for automatic deployment. Enjoy your first Liberty application!

Here’s an explanation of how a “Hello World”application works when deployed on WebSphere Liberty:

1. The Dropins Directory

WebSphere Liberty provides a convenient feature for deploying applications through its dropins directory.
This is a special folder where you can simply place your application—either as a WAR (Web Application
Archive) file or an exploded WAR directory—and Liberty will automatically detect and deploy it. Unlike
traditional deployment methods, you don’t need to manually configure the application in the server.xml

file. When Liberty starts or notices a change in the dropins folder (like adding a new application), it kicks
off the deployment process automatically.

2. Using an Exploded WAR Directory

In this example, the application is deployed as an exploded WAR directory named myApp.war instead of a
single packaged WAR file. An exploded WAR is just a folder containing all the contents of a web application
(like HTML, JSP files, and other resources) in an unzipped form. Liberty treats this directory exactly like
it would a WAR file, deploying it as a fully functional web application. This method is especially useful
during development because you can edit the files directly (e.g., tweak the HTML or JSP) without needing
to repackage everything into a WAR file.

3. The JSP File

The heart of this “Hello World”application is a file called index.jsp, a JavaServer Page (JSP). This file contains
basic HTML to display “Hello World!”on the screen and could include Java code if needed (though in this
case, it’s kept simple). When you access the application, Liberty dynamically compiles the JSP into a servlet
—a small Java program that generates the webpage—and serves it to your browser.

3



4. Enabling Java EE Features

To make all this work, Liberty relies on specific features being enabled in its configuration file, server.xml.
Here, the javaee-8.0 feature is activated, which provides support for technologies like JSPs, servlets, and
other components of the Java Enterprise Edition (EE) 8 platform. This feature ensures Liberty has the
necessary libraries and settings loaded to run the application smoothly.

5. Automatic Deployment Process

Once you place the myApp.war directory into the dropins folder and start Liberty (or if it’s already running),
the server automatically detects and deploys the application. You’ll see log messages in Liberty’s output
indicating that the application has started and is available at a specific URL. This hands-off deployment
process makes it quick and easy to get an application up and running.

6. Accessing the Application: Context Root

The URL where you can access the application is determined by its context root, which is simply the
name of the WAR file or directory. In this case, since the directory is named myApp.war, the context
root becomes /myApp. By default, Liberty runs on port 9080, so the full URL to access the application is
http://localhost:9080/myApp/.

7. Serving the Welcome File

When you visit http://localhost:9080/myApp/ in your browser, Liberty needs to figure out what to display. It
looks for a welcome file—a default page to serve when no specific file is requested. In this case, index.jsp

is located in the root of the myApp.war directory and is recognized as a welcome file by default. Liberty
compiles and serves index.jsp, which then displays “Hello World!”on your screen.

Summary

This “Hello World”application showcases how WebSphere Liberty simplifies web application deployment.
By leveraging the dropins directory for automatic deployment, supporting exploded WARs for easy editing,
and using the javaee-8.0 feature for Java EE compatibility, Liberty lets you quickly deploy and test a simple
web app without complex setup. The result is a lightweight, developer-friendly way to see “Hello World!”at
http://localhost:9080/myApp/, perfect for learning or prototyping.

4


	WebSphere Liberty - Hello World Application
	Step-by-Step Guide
	Notes
	1. The Dropins Directory
	2. Using an Exploded WAR Directory
	3. The JSP File
	4. Enabling Java EE Features
	5. Automatic Deployment Process
	6. Accessing the Application: Context Root
	7. Serving the Welcome File
	Summary



