
Analyze Spring Boot Projects

To analyze a Spring Boot project (which may consist of multiple modules) and extract all APIs defined
with @GetMapping or @PostMapping annotations, we need to traverse the project directory, identify controller
classes, extract the API paths, and print them in a specified format. Below is a complete Python script that
accomplishes this task, inspired by the structure of the provided code but tailored to the new requirements.
The output will list each controller with its associated GET and POST paths in the format “XXController: get
path post path”.

Approach

1. Traverse the Directory: Recursively find all .java files in the project directory and its subdirectories.
2. Identify Controllers: Check each Java file for @Controller or @RestController annotations to confirm
it’s a controller class.

3. Extract Class-Level Paths: Look for @RequestMapping annotations at the class level to determine base
paths.

4. Extract Method-Level APIs: Find methods annotated with @GetMapping or @PostMapping, extract their
paths, and combine them with base paths if present.

5. Organize and Print: Collect GET and POST paths per controller and print them in the specified format.

Python Script

import os

import sys

import re

from collections import defaultdict

def find_java_files(root_dir):

"""

Recursively find all .java files in the given directory and its subdirectories.

Args:

root_dir (str): The root directory to start the search from.

Yields:

str: The full path to each .java file.

"""

for dirpath, dirnames, filenames in os.walk(root_dir):

for filename in filenames:

if filename.endswith('.java'):

1

yield os.path.join(dirpath, filename)

def extract_paths(line, annotation_type):

"""

Extract path values from a Spring annotation (@GetMapping, @PostMapping, or @RequestMapping).

Args:

line (str): The line containing the annotation.

annotation_type (str): The type of annotation ('GetMapping', 'PostMapping', or 'RequestMapping').

Returns:

list: A list of path strings extracted from the annotation.

"""

if annotation_type in ['GetMapping', 'PostMapping']:

match = re.search(rf'@{annotation_type}\((.*)\)', line)

if match:

content = match.group(1)

Extract all string literals within quotes

paths = re.findall(r'"([^"]*)"', content)

return paths

return []

elif annotation_type == 'RequestMapping':

match = re.search(r'@RequestMapping\((.*)\)', line)

if match:

content = match.group(1)

Look for 'value' or 'path' attribute

value_match = re.search(r'(value|path)\s*=\s*({[^}]*}|"[^"]*")', content)

if value_match:

value = value_match.group(2)

if value.startswith('{'):

paths = re.findall(r'"([^"]*)"', value)

else:

paths = [value.strip('"')]

return paths

If no 'value' or 'path', assume direct path specification

paths = re.findall(r'"([^"]*)"', content)

return paths

return []

if __name__ == '__main__':

2

Parse command-line arguments

if len(sys.argv) != 2:

print("Usage: python script.py <root_directory>")

sys.exit(1)

root_dir = sys.argv[1]

if not os.path.isdir(root_dir):

print(f"[ERROR] The specified path is not a directory: {root_dir}")

sys.exit(1)

print(f"[INFO] Starting analysis of directory: {root_dir}")

Initialize a dictionary to store controller mappings

controllers = defaultdict(lambda: {'GET': [], 'POST': []})

total_files = 0

error_files = 0

Process all Java files

for java_file in find_java_files(root_dir):

try:

with open(java_file, 'r', encoding='utf-8') as f:

lines = f.readlines()

Check if the file is a controller

if any('@Controller' in line or '@RestController' in line for line in lines):

controller_name = os.path.basename(java_file).replace('.java', '')

Find the class declaration line to separate class-level and method-level annotations

class_line_index = None

for i, line in enumerate(lines):

if re.search(r'public\s+(class|abstract\s+class|interface)\s+\w+', line):

class_line_index = i

break

if class_line_index is None:

continue

Extract class-level @RequestMapping as base paths

base_paths = []

for line in lines[:class_line_index]:

if re.search(r'\s*@RequestMapping', line):

3

base_paths = extract_paths(line, 'RequestMapping')

break

if not base_paths:

base_paths = ['']

Extract method-level @GetMapping and @PostMapping

get_paths = []

post_paths = []

for line in lines[class_line_index:]:

if re.search(r'\s*@GetMapping', line):

paths = extract_paths(line, 'GetMapping')

for base in base_paths:

for path in paths:

full_path = base + path

get_paths.append(full_path)

elif re.search(r'\s*@PostMapping', line):

paths = extract_paths(line, 'PostMapping')

for base in base_paths:

for path in paths:

full_path = base + path

post_paths.append(full_path)

Store unique paths

get_paths = sorted(list(set(get_paths)))

post_paths = sorted(list(set(post_paths)))

if get_paths or post_paths:

controllers[controller_name]['GET'] = get_paths

controllers[controller_name]['POST'] = post_paths

total_files += 1

except Exception as e:

print(f"[ERROR] Could not read file {java_file}: {e}")

error_files += 1

Print summary

print(f"[INFO] Total Java files attempted: {total_files + error_files}")

print(f"[INFO] Successfully processed: {total_files}")

print(f"[INFO] Files with errors: {error_files}")

print(f"[INFO] Total controllers found: {len(controllers)}")

4

Print results in the specified format

for controller, mappings in sorted(controllers.items()):

print(f"{controller}:")

for path in mappings['GET']:

print(f"get {path}")

for path in mappings['POST']:

print(f"post {path}")

Explanation

• Imports: We use os for directory traversal, sys for command-line arguments, re for regular expressions,
and defaultdict to organize controller data.

• find_java_files: This function recursively yields all .java files in the project directory, handlingmultiple
modules naturally via os.walk.

• extract_paths: This function parses @GetMapping, @PostMapping, or @RequestMapping annotations to ex-
tract path values. It handles:

– Single paths (e.g., @GetMapping("/path")).
– Multiple paths (e.g., @GetMapping({"/path1", "/path2"})).
– Named attributes (e.g., @RequestMapping(value = "/path")).

• Main Logic:

– Command-Line Handling: Takes a root directory as input, similar to the provided script.
– Controller Detection: Checks for @Controller or @RestController in the file content.
– Base Paths: Extracts class-level @RequestMapping paths before the class declaration.
– API Extraction: Processes lines after the class declaration for @GetMapping and @PostMapping, com-
bining paths with base paths.

– Output: Prints each controller with its GET and POST paths, one per line, prefixed with “get”or
“post”.

• Error Handling: Catches exceptions during file reading and reports them, mirroring the robustness
of the provided code.

Sample Output

For a Spring Boot project with a file UserController.java:

@RestController

@RequestMapping("/users")

public class UserController {

@GetMapping("/all")
5

public ResponseEntity<?> getAllUsers() { ... }

@PostMapping("/create")

public ResponseEntity<?> createUser() { ... }

}

Running python script.py /path/to/project might produce:

[INFO] Starting analysis of directory: /path/to/project

[INFO] Total Java files attempted: 10

[INFO] Successfully processed: 10

[INFO] Files with errors: 0

[INFO] Total controllers found: 1

UserController:

get /users/all

post /users/create

Notes

• Simplifications: The script assumes annotations are on single lines and paths are string literals with-
out complex expressions. For production use, a Java parser might be more robust.

• GET and POST Only: As requested, it focuses on @GetMapping and @PostMapping, ignoring other meth-
ods like PUT or DELETE (though the thinking trace considered @RequestMapping with methods).

• Path Concatenation: Combines class-level and method-level paths directly (e.g., /users + /all =
/users/all). Spring normalizes multiple slashes, so this is sufficient for display purposes.

This script meets the query’s requirements while maintaining a structure similar to the provided code,
ensuring familiarity and reliability.

6

	Analyze Spring Boot Projects
	Approach
	Python Script
	Explanation
	Sample Output
	Notes

