
Visualize Dependencies

To visualize the Maven dependencies graph generated by the provided Python script, you can useGraphviz,
a widely-used and straightforward graphic tool that renders graphs described in the DOT language. The
script outputs a dependency graph in DOT format, representing dependencies between modules within
your Maven project as a directed graph, with nodes labeled by artifactIds and edges showing dependency
relationships. Below are the steps to draw and visualize this graph using Graphviz, along with mentions of
alternative tools like Polyglot or others if you prefer different options.

Using Graphviz (Recommended Approach)

Graphviz is ideal here because the script directly generates DOT format output, which Graphviz natively
supports. Follow these steps:

1. Run the Script
Execute the Python script, providing the root directory of your Maven project as an argument. This
generates the DOT output for the dependency graph.

python script.py /path/to/maven/project

2. Save the DOT Output to a File
Redirect the script’s output to a file, for example, dependencies.dot. This file will contain the graph
description in DOT format.

python script.py /path/to/maven/project > dependencies.dot

3. Install Graphviz (if not already installed)
Graphviz is available for Windows, macOS, and Linux. Install it using your package manager:

• Ubuntu/Debian:

sudo apt-get install graphviz

• macOS (with Homebrew):

brew install graphviz

• Windows: Download and install from the Graphviz website.

4. Generate a Visual Image
Use the dot command from Graphviz to convert the DOT file into an image. For example, to create a
PNG file:

dot -Tpng dependencies.dot -o dependencies.png

1

https://graphviz.org/download/


• You can replace -Tpng with other formats like -Tsvg for SVG or -Tpdf for PDF, depending on your
preference.

5. View the Graph
Open the generated dependencies.png file with any image viewer to see the dependency graph. Each
node will represent a module’s artifactId, and arrows will indicate dependencies between modules.

Alternative Tools

If you’d rather not use Graphviz or want to explore other common graphic tools, here are some options:

Polyglot Notebooks (e.g., with Jupyter) Polyglot Notebooks don’t directly visualize DOT files, but
you can integrate Graphviz within a Jupyter notebook environment: - Steps: 1. Install Graphviz and
the graphviz Python package: bash pip install graphviz sudo apt-get install graphviz # For

Ubuntu, adjust for your OS 2. Modify the script to use Python’s graphviz library instead of printing raw
DOT. Add this at the end of your script: “‘python from graphviz import Digraph

dot = Digraph()

for from_module, to_module in sorted(dependencies):

dot.edge(from_module, to_module)

dot.render('dependencies', format='png', view=True)

```

3. Run the modified script to generate and display dependencies.png directly.

• Note: This still relies on Graphviz under the hood, so it’s not a completely separate tool.

Gephi Gephi is an open-source network visualization tool that can import DOT files: - Steps: 1. Download
and install Gephi from gephi.org. 2. Run the script and save the DOT output to dependencies.dot. 3. Open
Gephi, go to File > Import > Graph File, and select dependencies.dot. 4. Adjust the layout (e.g., ForceAtlas
2) and visualize interactively. - Pros: Great for large graphs with advanced layout options. - Cons: Requires
manual import and setup.

Online Graphviz Tools For a quick, no-install option: - Steps: 1. Run the script and copy the DOT output
(from digraph G { to }). 2. Visit an online tool like GraphvizOnline. 3. Paste the DOT content and click to
render the graph. - Pros: No installation needed. - Cons: Requires internet access; less control over output
format.

2

https://gephi.org/
https://dreampuf.github.io/GraphvizOnline/


yEd yEd is a free graph editor, but it doesn’t natively support DOT: - Steps: 1. Convert the DOT file
to GraphML or another supported format using a tool like dot (e.g., dot -Tgraphml dependencies.dot -o

dependencies.graphml). 2. Open yEd, import the GraphML file, and adjust the layout. - Cons: Extra conver-
sion step required.

Why Graphviz is Best Here

The script’s output is tailored for DOT, making Graphviz the most direct and efficient choice. It’s lightweight,
command-line driven, and widely supported. The generated graph will look something like this (conceptu-
ally): - Nodes: artifactId of each module (e.g., "module-a", "module-b"). - Edges: Arrows like "module-a" ->

"module-b", showing that module-a depends on module-b.

If your graph is large, you can tweak the layout with Graphviz options (e.g., dot -Kneato for a different
arrangement), but the basic steps above should suffice.

Final Recommendation

To visualize theMaven dependencies graph from your script: 1. Run: python script.py /path/to/maven/project

> dependencies.dot 2. Install Graphviz if needed. 3. Convert to an image: dot -Tpng dependencies.dot -o

dependencies.png 4. Open dependencies.png to view your graph.

This approach is simple, uses a common tool (Graphviz), and aligns perfectly with your script’s output. If
you need interactivity or alternative formats, try Gephi or an online tool instead.

3


	Visualize Dependencies
	Using Graphviz (Recommended Approach)
	Alternative Tools
	Why Graphviz is Best Here
	Final Recommendation



