
Database Migrations with Flyway in Spring Boot

Here’s a concise, practical guide on how to use Flyway with a Spring Boot application to manage your
database schema:

What is Flyway?

Flyway is a database migration tool that helps you version-control your database schema. It applies SQL
scripts (migrations) in a specific order to evolve your database, making it ideal for Spring Boot projects
where consistency and automation are key.

Step 1: Add Flyway Dependency

To get started, add Flyway to your project. If you’re using Maven, update your pom.xml:

<dependency>

<groupId>org.flywaydb</groupId>

<artifactId>flyway-core</artifactId>

</dependency>

For Gradle, add this to your build.gradle:

implementation 'org.flywaydb:flyway-core'

This pulls Flyway into your Spring Boot application.

Step 2: Configure Your Database Connection

Flyway needs to knowwhich database tomanage. Define your database connection in application.properties

(or application.yml). For example, with PostgreSQL:

spring.datasource.url=jdbc:postgresql://localhost:5432/mydb

spring.datasource.username=myuser

spring.datasource.password=mypassword

Spring Boot automatically configures Flyway to use this data source, so no extra setup is needed here.

1



Step 3: Create Migration Scripts

Flyway uses versioned SQL scripts to update your database. Place these scripts in the default directory:
src/main/resources/db/migration. Each scriptmust follow this naming pattern: V<version>__<description>.sql.
The version number ensures migrations run in order.

For example, create a file named V1__create_users_table.sql:

CREATE TABLE users (

id SERIAL PRIMARY KEY,

username VARCHAR(255) NOT NULL,

email VARCHAR(255) NOT NULL

);

Save it in src/main/resources/db/migration.

Step 4: Run Your Application

Start your Spring Boot application (e.g., via mvn spring-boot:run or your IDE). Flyway will: - Check the
database for a migration history. - Apply any pending migrations (like V1__create_users_table.sql) in se-
quence.

This happens automatically on startup thanks to Spring Boot’s integration—nomanual intervention required.

Step 5: Customize Flyway (Optional)

You can adjust Flyway’s behavior with properties in application.properties. Here are some common options:

spring.flyway.locations=classpath:db/migration # Where to find scripts

spring.flyway.baseline-on-migrate=true # Handle existing databases

spring.flyway.enabled=true # Toggle Flyway on/off

These let you tailor Flyway to your project’s needs.

2



Advanced Features

Flyway offers more than just basic migrations: - Java-based migrations: Write migrations in Java for
complex logic. - Repeatable migrations: Use R__<description>.sql for scripts that rerun when changed
(e.g., views). - Undo migrations: Roll back changes (requires Flyway Pro).

Check the Flyway documentation for deeper exploration.

Summary

To use Flyway in Spring Boot: 1. Add the Flyway dependency to your project. 2. Set up your database
connection in application.properties. 3. Write versioned SQL scripts in src/main/resources/db/migration.
4. Launch your app—Flyway applies the migrations automatically.

Flyway simplifies database schemamanagement with versioning and automation, perfectly complementing
Spring Boot’s streamlined development experience.

3

https://flywaydb.org/documentation/

	Database Migrations with Flyway in Spring Boot
	What is Flyway?
	Step 1: Add Flyway Dependency
	Step 2: Configure Your Database Connection
	Step 3: Create Migration Scripts
	Step 4: Run Your Application
	Step 5: Customize Flyway (Optional)
	Advanced Features
	Summary



