
Liquibase: Database Scheme Management

Here’s a comprehensive guide on how to use Liquibase in a Spring Boot application to manage your
database schema changes effectively:

1. Add Liquibase Dependency

To get started, you need to include the Liquibase dependency in your project. If you’re using Maven, add
this to your pom.xml:

<dependency>

<groupId>org.liquibase</groupId>

<artifactId>liquibase-core</artifactId>

</dependency>

For Gradle, add this to your build.gradle:

implementation 'org.liquibase:liquibase-core'

This brings the Liquibase core library into your project.

2. Configure Liquibase

Liquibase uses a changelog file to manage database schema changes. By default, Spring Boot
looks for a file named db/changelog/db.changelog-master.yaml, db/changelog/db.changelog-master.xml, or
db/changelog/db.changelog-master.sql in the classpath. You can customize this location by adding a
property to your application.properties (or application.yml):

spring.liquibase.change-log=classpath:/db/changelog/db.changelog-master.xml

This tells Spring Boot where to find your changelog file.

1



3. Create a Changelog File

The changelog file defines the changes you want to apply to your database. You can write it in formats like
XML, YAML, or SQL. Here’s an example of anXML changelog file located at src/main/resources/db/changelog/db.changelog-master.xml:

<?xml version="1.0" encoding="UTF-8"?>

<databaseChangeLog

xmlns="http://www.liquibase.org/xml/ns/dbchangelog"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog

http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.8.xsd">

<changeSet id="1" author="your-name">

<createTable tableName="users">

<column name="id" type="int">

<constraints primaryKey="true" nullable="false"/>

</column>

<column name="username" type="varchar(255)"/>

<column name="email" type="varchar(255)"/>

</createTable>

</changeSet>

</databaseChangeLog>

This example creates a users table with three columns: id, username, and email. Each <changeSet> represents
a set of changes to apply.

4. Run Your Spring Boot Application

When you start your Spring Boot application, Liquibase automatically: - Reads the changelog file. - Checks
which changesets have already been applied (tracked in a table called DATABASECHANGELOG). - Executes any
new changesets against your database.

No additional code is needed—Spring Boot’s auto-configuration handles this for you.

5. Customize Liquibase (Optional)

You can tweak Liquibase’s behavior using properties in application.properties. Here are some common
options:

2



spring.liquibase.enabled=true # Enable or disable Liquibase

spring.liquibase.drop-first=false # Drop the database before applying changes (use with caution)

spring.liquibase.contexts=dev,prod # Run changesets only in specific contexts

These settings allow you to adapt Liquibase to your environment or workflow.

6. Leverage Advanced Features

Liquibase offers powerful features to enhance schemamanagement: -Contexts and Labels: Control which
changesets run in specific environments (e.g., dev vs. prod). - Preconditions: Ensure certain conditions
(e.g., a table exists) are met before applying a changeset. - Rollbacks: Define how to undo a changeset if
needed. - Refactoring: Use built-in support for complex database changes (e.g., renaming columns).

For example, adding a context to a changeset:

<changeSet id="2" author="your-name" context="dev">

<addColumn tableName="users">

<column name="created_at" type="timestamp"/>

</addColumn>

</changeSet>

This changeset only runs in the dev context.

7. Test with an In-Memory Database

For testing, pair Liquibase with an in-memory database like H2. Add the H2 dependency:

<dependency>

<groupId>com.h2database</groupId>

<artifactId>h2</artifactId>

<scope>runtime</scope>

</dependency>

Then configure your application.properties for testing:

spring.datasource.url=jdbc:h2:mem:testdb

spring.liquibase.change-log=classpath:/db/changelog/db.changelog-master.xml

Liquibase will apply your changes to the in-memory database during tests.

3



8. Version Control Your Changelog

Store your changelog files in version control (e.g., Git) alongside your application code. This ensures your
database schema evolves in sync with your codebase, making deployments and rollbacks more predictable.

Summary

To use Liquibase in a Spring Boot application: 1. Add the Liquibase dependency. 2. Configure the changelog
file location. 3. Create a changelog file with your database changes. 4. Run your application—Liquibase
handles the rest.

Liquibase is a robust tool for managing database schema changes in a structured, version-controlled way,
seamlessly integrated with Spring Boot.

4


	Liquibase: Database Scheme Management
	1. Add Liquibase Dependency
	2. Configure Liquibase
	3. Create a Changelog File
	4. Run Your Spring Boot Application
	5. Customize Liquibase (Optional)
	6. Leverage Advanced Features
	7. Test with an In-Memory Database
	8. Version Control Your Changelog
	Summary



