
Python Requests Library

To fully replace Postman with the Python requests library, you can perform all common HTTP operations such
as sending different types of requests, handling headers, working with JSON data, uploading files, using
proxies, and asserting responses. Below, I’ll walk you through examples for each of these functionalities
step-by-step, ensuring you have a complete and practical guide.

Step 1: Install the Requests Library

Before you begin, ensure the requests library is installed. Run this command in your terminal:

pip install requests

Now, let’s dive into the examples.

Sending HTTP Requests

The requests library supports all HTTP methods like GET, POST, PUT, DELETE, etc. Here’s how to send a
simple GET and POST request:

GET Request

import requests

Send a GET request

response = requests.get('https://api.example.com/data')

Print the status code and response body

print("Status Code:", response.status_code)

print("Response Body:", response.text)

POST Request

Send a POST request with no data

response = requests.post('https://api.example.com/submit')

print("Status Code:", response.status_code)

print("Response Body:", response.text)

1

Adding Headers

Headers are often used for authentication, content types, or custom metadata. Pass them as a dictionary
to the headers parameter.

Define custom headers

headers = {

'Authorization': 'Bearer my_token',

'Content-Type': 'application/json',

'User-Agent': 'MyApp/1.0'

}

Send a GET request with headers

response = requests.get('https://api.example.com/data', headers=headers)

print("Status Code:", response.status_code)

print("Response Headers:", response.headers)

print("Response Body:", response.text)

Sending JSON Data

To send JSON data in a POST request (like selecting JSON in Postman’s body tab), use the json parameter.
This automatically sets the Content-Type to application/json.

Define JSON data

data = {

'key1': 'value1',

'key2': 'value2'

}

Send a POST request with JSON data

response = requests.post('https://api.example.com/submit', json=data, headers=headers)

print("Status Code:", response.status_code)

print("Response JSON:", response.json())

2

Uploading Files

To upload files (similar to Postman’s form-data option), use the files parameter. Open files in binary mode
('rb') and optionally include additional form data.

Simple File Upload

Prepare file for upload

files = {

'file': open('myfile.txt', 'rb')

}

Send POST request with file

response = requests.post('https://api.example.com/upload', files=files)

print("Status Code:", response.status_code)

print("Response Body:", response.text)

Close the file manually

files['file'].close()

File Upload with Form Data (Recommended Approach) Using a with statement ensures the file is
closed automatically:

Additional form data

form_data = {

'description': 'My file upload'

}

Open and upload file

with open('myfile.txt', 'rb') as f:

files = {

'file': f

}

response = requests.post('https://api.example.com/upload', data=form_data, files=files)

print("Status Code:", response.status_code)

print("Response Body:", response.text)

3

Using Proxies

To route requests through a proxy (similar to Postman’s proxy settings), use the proxies parameter with a
dictionary.

Define proxy settings

proxies = {

'http': 'http://myproxy:8080',

'https': 'https://myproxy:8080'

}

Send a request through a proxy

response = requests.get('https://api.example.com/data', proxies=proxies)

print("Status Code:", response.status_code)

print("Response Body:", response.text)

Handling and Asserting Responses

The requests library provides easy access to response details like status codes, JSON data, headers, and
cookies. You can use Python’s assert statements to validate responses, similar to Postman’s test scripts.

Parsing JSON Responses

response = requests.get('https://api.example.com/data')

Check status code and parse JSON

if response.status_code == 200:

data = response.json() # Converts response to Python dict/list

print("JSON Data:", data)

else:

print("Error:", response.status_code)

Asserting Response Details

response = requests.get('https://api.example.com/data')

Assert status code

assert response.status_code == 200, f"Expected 200, got {response.status_code}"
4

Parse JSON and assert content

data = response.json()

assert 'key' in data, "Key not found in response"

assert data['key'] == 'expected_value', "Value does not match"

Check response headers

assert 'Content-Type' in response.headers, "Content-Type header missing"

assert response.headers['Content-Type'] == 'application/json', "Unexpected Content-Type"

Check cookies

cookies = response.cookies

assert 'session_id' in cookies, "Session ID cookie missing"

print("All assertions passed!")

Handling Errors Wrap requests in a try-except block to catch network or HTTP errors:

try:

response = requests.get('https://api.example.com/data')

response.raise_for_status() # Raises an exception for 4xx/5xx errors

data = response.json()

print("Data:", data)

except requests.exceptions.RequestException as e:

print("Request failed:", e)

Comprehensive Example

Here’s a full example combining headers, file upload, proxies, and response assertions:

import requests

Define headers

headers = {

'Authorization': 'Bearer my_token'

}

Form data and file

5

form_data = {

'description': 'My file upload'

}

Proxy settings

proxies = {

'http': 'http://myproxy:8080',

'https': 'https://myproxy:8080'

}

Send request with file upload

try:

with open('myfile.txt', 'rb') as f:

files = {'file': f}

response = requests.post(

'https://api.example.com/upload',

headers=headers,

data=form_data,

files=files,

proxies=proxies

)

response.raise_for_status() # Check for HTTP errors

Parse and assert response

data = response.json()

assert 'upload_id' in data, "Upload ID not found in response"

print("Upload successful, ID:", data['upload_id'])

except requests.exceptions.RequestException as e:

print("Request failed:", e)

Reusable Functions (Replacing Postman Collections)

To mimic Postman’s saved requests or collections, encapsulate logic in functions:

def upload_file(file_path, description, token, proxy=None):

headers = {'Authorization': f'Bearer {token}'}

data = {'description': description}

proxies = {'http': proxy, 'https': proxy} if proxy else None
6

try:

with open(file_path, 'rb') as f:

files = {'file': f}

response = requests.post(

'https://api.example.com/upload',

headers=headers,

data=data,

files=files,

proxies=proxies

)

response.raise_for_status()

data = response.json()

assert 'upload_id' in data, "Upload ID not found"

return data['upload_id']

except requests.exceptions.RequestException as e:

print("Request failed:", e)

return None

Usage

upload_id = upload_file('myfile.txt', 'My file upload', 'my_token', 'http://myproxy:8080')

if upload_id:

print("Upload successful, ID:", upload_id)

Additional Features

• Sessions: Use requests.Session() to persist cookies or headers across requests.
• Timeouts: Add timeout=5 (seconds) to requests to avoid hanging.
• Redirects: Control with allow_redirects=True/False.

Summary

With the requests library, you can: - Send HTTP requests (get, post, etc.) - Include headers, JSON data, and
file uploads - Use proxies - Parse and assert responses (status, JSON, headers, cookies) - Organize code into
reusable functions

This gives you a programmatic, flexible alternative to Postman, suitable for scripting and automation!
7

	Python Requests Library
	Step 1: Install the Requests Library
	Sending HTTP Requests
	Adding Headers
	Sending JSON Data
	Uploading Files
	Using Proxies
	Handling and Asserting Responses
	Comprehensive Example
	Reusable Functions (Replacing Postman Collections)
	Additional Features
	Summary

