Spring Boot 2.7.18 in WebSphere Liberty Profile

When using Spring Boot 2.7.18 for deploying an application to WebSphere Liberty Profile (WLP) as described
in the provided guide, the good news is that no changes are required to the DemoApplication class or the
use of SpringBootServletInitializer. Spring Boot 2.7.18 is a patch release within the 2.7.x series, which
means it includes bug fixes and minor improvements but does not introduce breaking changes that would
affect the standard configuration for WAR deployment outlined in the guide. Below, I'll explain why this is

the case and confirm that the setup remains fully compatible.

Understanding the Setup

The guide configures a Spring Boot application to be deployed as a WAR file on WLP by:

1. Extending SpringBootServletInitializer:

* The DemoApplication class extends SpringBootServletInitializer to enable deployment to an ex-
ternal servlet container like WLP. This class is necessary because, while Spring Boot defaults to
running as a standalone JAR with an embedded server, deploying to WLP requires integration with
its servlet container.

* The configure method is overridden to specify the application sources, ensuring the application

bootstraps correctly in the external container.
Here’s the code from the guide:

package com.example.demo;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.boot.builder.SpringApplicationBuilder;

import org.springframework.boot.web.servlet.support.SpringBootServletInitializer;

@SpringBootApplication

public class DemoApplication extends SpringBootServletInitializer {
@0verride

protected SpringApplicationBuilder configure(SpringApplicationBuilder application) {

return application.sources(DemoApplication.class);

public static void main(String[] args) {



SpringApplication.run(DemoApplication.class, args);

2. Packaging as a WAR File:

* The pom.xml specifies <packaging>war</packaging> and marks the spring-boot-starter-tomcat de-
pendency as <scope>provided</scope> to exclude the embedded Tomcat server, relying instead on
WLP’s servlet container.

3. Deploying to WLP:

* The WAR file is placed in WLP’s dropins directory for automatic deployment, and WLP's javaee-8.0

feature provides Servlet 4.0 support, which is compatible with Spring Boot’s requirements.

Why No Changes Are Needed with Spring Boot 2.7.18

Spring Boot 2.7.18 is part of the 2.7.x series, and significant changes to deployment mechanisms or APIs
typically occur between major versions (e.g., 2.x to 3.x), not within minor or patch releases. Here's a
detailed analysis:

1. Compatibility with SpringBootServletInitializer

* Purpose: SpringBootServletInitializer remains the standard way to configure a Spring Boot applica-
tion for WAR deployment in the 2.x series. It integrates with the external servlet container by providing
a hook to set up the application context.

« Stability in 2.7.18: There are no deprecations or replacements for SpringBootServletInitializer in
Spring Boot 2.7.18. Major changes, such as the shift to Jakarta EE (replacing Java EE APIs), occur in
Spring Boot 3.x, which also requires Java 17. Since 2.7.18 stays within the 2.x series and uses Java EE,

the existing implementation in DemoApplication remains valid and unchanged.

2. Servlet Container Compatibility

¢ Spring Boot Requirements: Spring Boot 2.7.x requires Servlet 3.1 or higher. The guide uses WLP
with the javaee-8.0 feature, which includes Servlet 4.0—an even newer specification. This ensures full
compatibility.

* No Changes in 2.7.18: Patch releases like 2.7.18 do not alter servlet compatibility or introduce new

requirements that would affect how SpringBootServletInitializer interacts with WLP.



3. Dependency and Packaging Configuration

* Tomcat as provided: The guide correctly sets spring-boot-starter-tomcat t0O <scope>provided</scope>
in pom.xml, ensuring the embedded Tomcat is excluded from the WAR file. This is a standard practice
for WAR deployments to external containers and remains unchanged in 2.7.18.

* Maven Configuration: The packaging type (war) and dependency setup are consistent with Spring

Boot 2.7.x conventions, and no updates specific to 2.7.18 are needed.

4. WLP Deployment Specifics

* Dropins Directory: WLP’s dropins deployment mechanism is unaffected by the Spring Boot version,
as it relies on the WAR file structure and servlet specifications, both of which remain compatible.

* Context Root and Port: The context root (e.g., /myapp) and default port (e.g., 9080) are determined
by WLP and the WAR file name, not Spring Boot’s version, so they stay the same.

5. Potential New Features or Deprecations

* Release Notes Consideration: Spring Boot 2.7.x release notes (including 2.7.18) typically cover
dependency updates, security fixes, and minor enhancements, but none impact WAR deployment or
SpringBootServletInitializer. For example, no new annotations or configuration methods were intro-
duced in 2.7.18 to replace the existing approach.

* Contrast with 3.x: In contrast, Spring Boot 3.x adopts Jakarta EE and might require adjustments

(e.qg., different base classes or updated servlet APIs), but 2.7.18 does not bridge to those changes.

Conclusion

For Spring Boot 2.7.18, the DemoApplication class and the use of SpringBootServletInitializer as shown in

the guide do not require any modifications. The configuration is fully compatible with:

* WAR packaging and deployment to WLP.
* The javaee-8.0 feature in WLP (Servlet 4.0).

» Spring Boot 2.7.x’s servlet and deployment requirements.

You can proceed with the exact steps and code from the guide—using Spring Boot 2.7.18 instead of a generic
2.7.x version—and expect the application to deploy and run successfully on WLP, returning “Hello World!”
at http://localhost:9080/myapp/. No additional configurations, property changes, or code adjustments are

necessary.



	Spring Boot 2.7.18 in WebSphere Liberty Profile
	Understanding the Setup
	Why No Changes Are Needed with Spring Boot 2.7.18
	Conclusion



