
Application Startup Issues in WebSphere Liberty Profile

It seems that after downgrading your Spring Boot application to version 2.7.18 and deploying it to Web-
Sphere Liberty Profile (WLP), you’re encountering an issue where the application fails to start within the
default timeout period, as indicated by the message in console.log: “the application myapp has not started

in 30.xx seconds”. This suggests that the application is either taking too long to initialize or failing to start
altogether. Below, I’ll guide you through a step-by-step process to diagnose and fix this issue.

Step 1: Investigate Server Logs for Clues

The first thing to do is to examine the server logs in more detail to identify the root cause of the startup
failure. The console.log file provides the timeout message, but it might not contain the full story. Check the
following log files in your WLP server’s log directory (/opt/ibm/wlp/usr/servers/myServer/logs/):

• messages.log: This file often contains ERROR or WARNING messages that can pinpoint issues like miss-
ing dependencies, configuration errors, or exceptions during startup.

• trace.log: If detailed tracing is enabled, this file might provide more context about what’s happening
during deployment.

Look for: - Stack traces or exceptions (e.g., ClassNotFoundException, NoSuchBeanDefinitionException). - Mes-
sages about missing resources or incompatible libraries. - Indications that the application context failed to
initialize.

If you don’t see enough detail, you can increase the logging level in WLP by modifying the server.xml file.
Add or update the <logging> element like this:

<logging traceSpecification="*=info:com.ibm.ws.webcontainer*=all" />

Restart the server after making this change, redeploy your application, and check the logs again for more
information.

Step 2: Verify Application Startup with Logging

Since this is a Spring Boot application, the issue might be related to the application context failing to ini-
tialize. To determine how far the startup process gets, add a simple log statement to your main application
class using a @PostConstruct method. Here’s an example:

1



package com.example.demo;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

import org.springframework.boot.builder.SpringApplicationBuilder;

import org.springframework.boot.web.servlet.support.SpringBootServletInitializer;

import javax.annotation.PostConstruct;

@SpringBootApplication

public class DemoApplication extends SpringBootServletInitializer {

@Override

protected SpringApplicationBuilder configure(SpringApplicationBuilder application) {

return application.sources(DemoApplication.class);

}

public static void main(String[] args) {

SpringApplication.run(DemoApplication.class, args);

}

@PostConstruct

public void init() {

System.out.println("Application context initialized");

}

}

• Rebuild your application (mvn clean package).
• Redeploy the WAR file to WLP’s dropins directory.
• Check console.log for the message "Application context initialized".

If this message appears, the application context is loading successfully, and the issue might be related to
web components or servlet initialization. If it doesn’t appear, the problem occurs earlier during context
initialization.

Step 3: Enable Debug Logging in Spring Boot

To get more visibility into Spring Boot’s startup process, enable debug logging by adding a configuration
file. Create or edit src/main/resources/application.properties with the following:

2



debug=true

• Rebuild and redeploy the application.
• Check console.log (or other logs) for detailed debug output from Spring Boot.

This will log information about bean creation, auto-configuration, and any errors that occur during startup.
Look for clues about what might be hanging or failing.

Step 4: Verify WAR File and Dependency Configuration

Since you’re deploying to WLP, which provides its own Servlet container, ensure your WAR file is correctly
configured for an external server:

• WAR Packaging: In your pom.xml, confirm that the packaging is set to war:

<packaging>war</packaging>

• Tomcat as Provided: Ensure that the embedded Tomcat is excluded from the WAR file, as WLP will
provide the Servlet container. Check your pom.xml for:

<dependency>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-web</artifactId>

</dependency>

<dependency>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-tomcat</artifactId>

<scope>provided</scope>

</dependency>

• Servlet API Compatibility: Spring Boot 2.7.18 uses javax.servlet:javax.servlet-api:4.0.1, which is
compatible with WLP’s javaee-8.0 feature (Servlet 4.0). To confirm there are no conflicting dependen-
cies, run:

mvn dependency:tree

Look for any unexpected Servlet API versions (e.g., jakarta.servlet-api, which is used in Spring Boot 3.x
and incompatible with javaee-8.0).

If you suspect dependency issues, unzip the WAR file and inspect WEB-INF/lib to ensure no unexpected
Servlet-related JARs are included.

3



Step 5: Test Locally to Isolate the Issue

To determine if the problem is specific to WLP or the application itself, test the application locally using the
embedded Tomcat:

mvn spring-boot:run

If it starts successfully and you can access your endpoints (e.g., a simple "Hello World!" REST controller),
the issue is likely related to the WLP deployment rather than the application code.

Step 6: Adjust WLP Startup Timeout (Temporary Workaround)

If the logs suggest that the application is starting but taking longer than 30 seconds, you can increase the
startup timeout in WLP’s server.xml:

<applicationMonitor startTimeout="60s" />

• Redeploy the application and monitor the logs.
• If it starts after the extended timeout, this confirms a slow startup process, and you should optimize
the application (e.g., reduce component scanning or initialization tasks).

However, this is a workaround—ideally, a simple application should start within 30 seconds, so continue
investigating the root cause.

Step 7: Simplify and Compare with a New Project

If the issue persists, create a minimal Spring Boot 2.7.18 project to test deployment on WLP: 1. Use Spring
Initializr with: - Spring Boot 2.7.18 - Java (matching your WLP version, e.g., 8 or 11) - Dependency: Spring
Web 2. Add a basic REST controller:

package com.example.demo;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.RestController;

@RestController

public class HelloController {

4

https://start.spring.io/
https://start.spring.io/


@GetMapping("/")

public String hello() {

return "Hello World!";

}

}

3. Configure it for WAR deployment (extend SpringBootServletInitializer as shown earlier).
4. Build the WAR file (mvn clean package) and deploy it to WLP’s dropins directory.

If this new project starts successfully, compare its pom.xml, main class, and configuration with your original
project to identify differences causing the failure.

Step 8: Additional WLP Troubleshooting

If none of the above resolves the issue, consider these WLP-specific checks: - Clean the Work Directory:
Remove cached data thatmight interfere with deployment: bash rm -rf /opt/ibm/wlp/usr/servers/myServer/workarea

Then restart the server and redeploy. - Check WLP Version: Run /opt/ibm/wlp/bin/productInfo version to
confirm your WLP version supports Spring Boot 2.7.x deployments with javaee-8.0. - Java Version: Ensure
the Java version used by WLP (check with java -version in the WLP environment) matches one supported
by Spring Boot 2.7.18 (Java 8, 11, or 17).

Recommended Fix

Based on the information provided, the most likely issue is a problem during application context initialization
or a subtle configuration mismatch with WLP. Here’s how to fix it:

1. Start with Logging:

• Add the @PostConstruct logging (Step 2) and enable debug=true (Step 3).
• Redeploy and check console.log and messages.log for errors or where the startup hangs.

2. Validate Configuration:

• Confirm the WAR file setup and dependencies (Step 4).
• Test locally (Step 5) to rule out application-level issues.

3. Iterate and Simplify:

• If needed, test a minimal project (Step 7) to isolate the problem.

By following these steps, you should pinpoint the cause—whether it’s a dependency conflict, a slow-starting
component, or a WLP configuration issue—and resolve it accordingly. If you still encounter difficulties, share
specific error messages from the logs for further assistance!

5


	Application Startup Issues in WebSphere Liberty Profile
	Step 1: Investigate Server Logs for Clues
	Step 2: Verify Application Startup with Logging
	Step 3: Enable Debug Logging in Spring Boot
	Step 4: Verify WAR File and Dependency Configuration
	Step 5: Test Locally to Isolate the Issue
	Step 6: Adjust WLP Startup Timeout (Temporary Workaround)
	Step 7: Simplify and Compare with a New Project
	Step 8: Additional WLP Troubleshooting
	Recommended Fix



