
Monitoring Directory Changes with the FSEvents API

I was using a Jekyll blog, and when I ran bundle exec jekyll serve --incremental, the terminal displayed
fsevent_watch. Consequently, I inquired about it with an AI.

It seems like you might be referring to fsevent_watch, which isn’t a standard, standalone tool or function
in most programming contexts. Based on your question and common conventions, I’ll assume you’re ask-
ing about working with the FSEvents API on macOS to monitor file system events—perhaps you meant
something like fsevents or a related utility. If I’ve misunderstood, please clarify!

The FSEvents API is a macOS-specific framework that allows applications to receive notifications about
changes in a directory tree. It’s commonly used in C, Objective-C, or Swift programming to watch for file
system events like file creation, deletion, or modification. Since fsevent_watch isn’t a recognized command
or function (it might be a typo or a third-party tool), I’ll explain how to use the FSEvents API directly, which
is likely what you’re after.

Here’s a practical guide to using FSEvents to monitor a directory:

Using FSEvents in C/Objective-C

The FSEvents API is part of the CoreServices framework on macOS. Below is a basic example in C to monitor
a directory for changes:

1. Include Necessary Headers: You’ll need to include the FSEvents header from the CoreServices
framework.

2. Set Up the Event Stream: Create an event stream to watch a specific directory, define a callback
function to handle events, and schedule it with a run loop.

3. Handle Events: The callback processes the events (e.g., file changed, deleted) and provides paths
and flags.

Here’s a minimal example:

#include <CoreServices/CoreServices.h>

#include <stdio.h>

// Callback function to handle file system events

void callback(

ConstFSEventStreamRef streamRef,

void *clientCallBackInfo,

1

size_t numEvents,

void *eventPaths,

const FSEventStreamEventFlags eventFlags[],

const FSEventStreamEventId eventIds[])

{

char **paths = (char **)eventPaths;

for (size_t i = 0; i < numEvents; i++) {

printf("Change detected at: %s (Flags: 0x%x)\n", paths[i], eventFlags[i]);

}

}

int main() {

// Path to monitor (e.g., your home directory)

CFStringRef myPath = CFStringCreateWithCString(NULL, "/Users/yourusername", kCFStringEncodingUTF8);

CFArrayRef pathsToWatch = CFArrayCreate(NULL, (const void **)&myPath, 1, NULL);

// Create the event stream

FSEventStreamRef stream = FSEventStreamCreate(

NULL, // Allocator

&callback, // Callback function

NULL, // Callback info (context)

pathsToWatch, // Paths to watch

kFSEventStreamEventIdSinceNow, // Start with events from now

1.0, // Latency in seconds (batching delay)

kFSEventStreamCreateFlagNone // Flags (can use kFSEventStreamCreateFlagFileEvents for file-level events)

);

// Schedule the stream on the current run loop

FSEventStreamScheduleWithRunLoop(stream, CFRunLoopGetCurrent(), kCFRunLoopDefaultMode);

// Start the stream

FSEventStreamStart(stream);

// Run the loop to listen for events

printf("Monitoring /Users/yourusername... Press Ctrl+C to stop.\n");

CFRunLoopRun();

// Cleanup (unreachable in this example unless stopped)

FSEventStreamStop(stream);

FSEventStreamInvalidate(stream);

2

FSEventStreamRelease(stream);

CFRelease(pathsToWatch);

CFRelease(myPath);

return 0;

}

Steps Explained:

• Paths to Watch: You specify one or more directories (e.g., /Users/yourusername) in a CFArray.
• Callback: The callback function is triggered when changes occur. It receives an array of affected
paths and flags (e.g., kFSEventStreamEventFlagItemCreated).

• Stream Creation: FSEventStreamCreate sets up the watcher. The latency (e.g., 1.0 seconds) batches
events to avoid overwhelming the callback.

• Run Loop: The stream integrates with a run loop (like CFRunLoopRun) to keep the program alive and
responsive.

• Cleanup: Stop and release the stream when done (not shown in this infinite loop example).

Compilation: Compile with the CoreServices framework:

gcc -o fsevents_example fsevents_example.c -framework CoreServices

Run it:

./fsevents_example

Key Points:

• Granularity: By default, FSEventsmonitors directory-level changes. For file-level events (e.g., specific
file modifications), add the kFSEventStreamCreateFlagFileEvents flag.

• Latency: The latency parameter (e.g., 1.0) controls how often the callback fires. Lower values give
faster updates but more calls.

• Scope: FSEvents watches the entire directory tree recursively—no need to specify subdirectories.

Alternative: Using a Tool

If you’re looking for a command-line tool rather than coding it yourself, there’s no fsevent_watch in the
standard macOS toolkit. However, third-party tools like fswatch leverage FSEvents. To use fswatch:

1. Install fswatch (e.g., via Homebrew):

3

brew install fswatch

2. Run it:

fswatch /path/to/watch

This outputs paths as changes occur. For example:

fswatch ~/Documents

You’ll see lines like /Users/yourusername/Documents/file.txt when files change.

3. With a Script: Pipe it to a script for custom actions:

fswatch ~/Documents | while read -r file; do echo "Changed: $file"; done

If You Meant Something Else

If fsevent_watch refers to a specific library, tool, or typo (e.g., fsevents-watch), please provide more context
—like the programming language or environment you’re working in—and I’ll tailor the response further.

Let me know how I can refine this for you!

4

	Monitoring Directory Changes with the FSEvents API
	Using FSEvents in C/Objective-C
	Key Points:
	Alternative: Using a Tool
	If You Meant Something Else

