Java Multithreading

Let’s dive into Java multithreading and how to use the Executor framework effectively. Multithreading allows
your program to run multiple tasks concurrently, improving performance for 1/O-bound or CPU-intensive
operations. The Executor framework simplifies thread management by abstracting away low-level thread
creation and handling. I'll walk you through the basics, then show you how to use Executor and related

tools.

1. Basics of Multithreading in Java

Java provides two primary ways to create threads: - Extend Thread class:

class MyThread extends Thread {
public void run() {

System.out.println("Thread running: " + Thread.currentThread().getName());

public class Main {
public static void main(String[] args) {
MyThread thread = new MyThread();

thread.start(); // Starts the thread

* Implement Runnable interface:

class MyRunnable implements Runnable {
public void run() {

System.out.println("Runnable running: " + Thread.currentThread().getName());

public class Main {
public static void main(String[] args) {
Thread thread = new Thread(new MyRunnable());

thread.start();



e Call start O (not run()) to launch the thread—run() just executes the code in the current thread.

2. Why Use Executor?

Manually creating threads works for simple cases, but it’s inefficient for managing many tasks (e.g., thread
overhead, resource exhaustion). The Executor framework (introduced in Java 5 under java.util.concurrent)

provides a thread pool and task management system, making multithreading cleaner and more scalable.

3. Using ExecutorService

The ExecutorService interface (a subinterface of Executor) is the go-to tool. Here’s how to use it:

Step 1: Create an ExecutorService Use the Executors utility class to create a thread pool:

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

public class Main {
public static void main(String[] args) {
// Fized thread pool with 4 threads

ExecutorService executor = Executors.newFixedThreadPool(4);

// Submit tasks
for (int i = 0; i < 10; i++) {
executor.submit(() —> {
System.out.println("Task executed by: " + Thread.currentThread().getName());
try {
Thread.sleep(1000); // Simulate work
} catch (InterruptedException e) {

Thread.currentThread() . interrupt () ;

B;

// Shut down the ezecutor

executor.shutdown(); // Prevents new tasks, waits for existing ones to finish

2



* newFixedThreadPool(4) creates a pool with 4 threads. Excess tasks wait in a queue.

* submit() accepts Runnable Or Callable tasks (Callable returns a result).

Common Executor Types

* Executors.newSingleThreadExecutor(): One thread, processes tasks sequentially.
* Executors.newCachedThreadPool(): Creates threads as needed, reuses idle ones (good for short-lived
tasks).

* Executors.newScheduledThreadPool(n): For scheduling tasks with delays or periodicity.

4. Handling Results with Callable and Future

If you need task results, use Callable instead of Runnable:

import java.util.concurrent.*;

public class Main {
public static void main(String[] args) throws Exception {

ExecutorService executor = Executors.newFixedThreadPool(2);

// Submit a Callable task
Future<Integer> future = executor.submit(() -> {
Thread.sleep(1000);

return 42;

DR

// Do other work while task runs

System.out.println("Task submitted...");
// Get result (blocks until done)
Integer result = future.get();

System.out.println("Result: " + result);

executor.shutdown() ;



* Future.get() retrieves the result, blocking if the task isn’t finished.
* Use future.isDone() to check completion without blocking.

5. Advanced: Thread Pool Tuning

For real-world apps, you might want a custom ThreadPoolExecutor:

import java.util.concurrent.*;

public class Main {
public static void main(String[] args) {

// Custom thread pool: 2-4 threads, queue capacity of 10

ThreadPoolExecutor executor = new ThreadPoolExecutor(
2, // Core pool size
4, // Maz pool size
60L, // Idle thread timeout
TimeUnit.SECONDS,

new LinkedBlockingQueue<>(10) // Task queue

for (int i = 0; i < 15; i++) {
executor.execute(() —> {
System.out.println("Task by: " + Thread.currentThread().getName());
try {
Thread.sleep(500);
} catch (InterruptedException e) {

Thread.currentThread () .interrupt O ;

B

executor.shutdown() ;

* Core size (2): Minimum threads kept alive.
* Max size (4): Max threads if queue is full.

¢ Queue: Holds tasks when all threads are busy.




6. Best Practices

Shutdown Properly: Always call shutdown() or shutdownNow() to avoid resource leaks.

Handle Interruptions: Check Thread.currentThread() .isInterrupted() in loops.

Avoid Overloading: Too many threads can degrade performance—tune pool size based on CPU cores

(e.g., Runtime.getRuntime() .availableProcessors()).

Use try-finally with ExecutorService:

ExecutorService executor = Executors.newFixedThreadPool (4);
try {

// Submit tasks
} finally {

executor.shutdown() ;

Example with Log4j (Tying It Together)

Combining multithreading with your earlier Log4j question:

import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;

import java.util.concurrent.*;

public class Main {

private static final Logger logger = LogManager.getLogger (Main.class);

public static void main(String[] args) {

ExecutorService executor = Executors.newFixedThreadPool(3);

for (int i = 0; i < 5; i++) {
final int taskId = i;
executor.submit(() —> {
logger.info("Task {} started by {}", taskId, Thread.currentThread().getName());
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
logger.error("Task {} interrupted", taskId, e);

Thread.currentThread () .interrupt () ;



logger.info("Task {} completed", taskId);
B

executor.shutdown() ;

With the log4j2.xml from earlier, this logs task progress to console and file.



	Java Multithreading
	1. Basics of Multithreading in Java
	2. Why Use Executor?
	3. Using ExecutorService
	4. Handling Results with Callable and Future
	5. Advanced: Thread Pool Tuning
	6. Best Practices
	Example with Log4j (Tying It Together)



