
Spring Internal Workings

Let’s dive about Spring and its internal workings. Spring is a robust framework for building Java applications,
and I’ll address each part of your query step-by-step with clear explanations.

How Does Spring Work?

Spring operates on the principle of Inversion of Control (IoC). This means that instead of your application
code controlling the creation and management of objects, Spring takes charge. It does this through a
component called the IoC container. The IoC container is responsible for:

• Instantiating objects (called beans in Spring).
• Configuring them based on your specifications.
• Assembling them by managing their dependencies.

This approach reduces tight coupling in your code, making it more modular and easier to maintain.

How Does Spring Manage Beans?

In Spring, beans are the objects managed by the IoC container. Here’s how Spring handles them:

1. Definition: You define beans either in:

• XML configuration files.
• Java-based configuration using annotations like @Bean, @Component, @Service, etc.

2. Creation: When the application starts, the IoC container reads these definitions and creates the beans.
3. Dependency Injection (DI): Spring automatically injects dependencies (other beans) into a bean

where needed, using:

• Constructor injection.
• Setter injection.
• Field injection (via @Autowired).

The container manages the entire lifecycle of these beans—from creation to destruction—and ensures they’
re available when required.

Difference Between a Service and a Controller

In the context of Spring MVC (Spring’s web framework), these two components serve distinct purposes:

• Controller:

1



– Handles HTTP requests from users.
– Processes input, invokes business logic, and decides which view (e.g., a webpage) to return.
– Annotated with @Controller or @RestController.
– Lives in the web layer.

• Service:

– Encapsulates the business logic of the application.
– Performs tasks like calculations, data processing, or interacting with databases.
– Annotated with @Service.
– Lives in the business layer.

Example: - A controller might receive a request to display a user’s profile and call a service to fetch the
user data. - The service retrieves the data from a database and returns it to the controller, which then sends
it to the view.

In short: Controllers manage web interactions, while services handle the core functionality.

What Does Spring Provide?

Spring is a comprehensive framework offering a wide range of tools for enterprise applications. Key features
include:

• Dependency Injection: Simplifies managing object dependencies.
• Aspect-Oriented Programming (AOP): Adds cross-cutting concerns like logging or security.
• Transaction Management: Ensures data consistency across operations.
• Spring MVC: Builds robust web applications.
• Spring Boot: Simplifies setup with pre-configured defaults and embedded servers.
• Spring Data: Streamlines database access.
• Security: Provides authentication and authorization tools.

Spring’s modular design lets you pick only the features you need.

How Does Spring Look for Objects or Beans?

When a Spring application starts:

1. The IoC container initializes.
2. It scans for bean definitions in:

• XML files.
• Annotated classes (e.g., @Component, @Bean).

3. The container creates the beans and stores them in a map, indexed by name or type.
2



4. When a bean is needed (e.g., for injection or direct retrieval), the container provides it using:

• By-name lookup.
• By-type lookup (e.g., via @Autowired).

This process ensures beans are readily available throughout the application.

How to Use Tomcat or Netty as a Server?

Spring Boot, an extension of Spring, simplifies server setup by embedding servers directly into your appli-
cation. Here’s how it works with Tomcat and Netty:

• Tomcat (Servlet-Based):

– Default server in Spring Boot’s spring-boot-starter-web dependency.

– Add this to your pom.xml:

<dependency>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-web</artifactId>

</dependency>

– Spring Boot embeds Tomcat, and your app runs as a standalone executable JAR.

• Netty (Non-Servlet-Based):

– Used for reactive web applications (e.g., with Spring WebFlux).

– Replace Tomcat by excluding it and adding Netty:

<dependency>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-webflux</artifactId>

</dependency>

– Spring Boot embeds Netty instead, supporting asynchronous, non-blocking I/O.

You configure the server via application.properties (e.g., setting the port with server.port=8080). No exter-
nal server deployment is needed—Spring Boot handles it all.

Summary

• Spring’s Core: Uses an IoC container for object management.
• Bean Management: Defined via XML or annotations, with dependencies injected automatically.
• Service vs. Controller: Services handle business logic; controllers manage web requests.
• Features: Offers DI, AOP, web support, and more.
• Bean Lookup: Container finds and provides beans from configurations.
• Servers: Spring Boot embeds Tomcat or Netty with simple dependency changes.

3


	Spring Internal Workings
	How Does Spring Work?
	How Does Spring Manage Beans?
	Difference Between a Service and a Controller
	What Does Spring Provide?
	How Does Spring Look for Objects or Beans?
	How to Use Tomcat or Netty as a Server?
	Summary



