
How to Use Kubernetes

Kubernetes (often abbreviated as K8s) is an open-source platform for automating the deployment, scal-
ing, and operation of containerized applications. Below is a step-by-step guide on how to use Kubernetes
effectively.

1. Set Up a Kubernetes Cluster

Before you can deploy applications, you need a Kubernetes cluster—a set of machines (nodes) that run your
containerized workloads, managed by a control plane.

• For Local Development:

– Use Minikube or Docker Desktop to set up a single-node cluster on your local machine.

– Example with Minikube:

minikube start

• For Production:

– Use managed services like Google Kubernetes Engine (GKE), Amazon Elastic Kubernetes Service
(EKS), or Azure Kubernetes Service (AKS).

– Alternatively, set up a cluster manually with Kubeadm.

– Example with a managed service (e.g., GKE):

gcloud container clusters create my-cluster

2. Create a Docker Image of Your Application

Kubernetes manages containerized applications, typically using Docker containers.

• Write a Dockerfile to define your application’s environment. Example:

FROM node:16

WORKDIR /app

COPY . .

RUN npm install

CMD ["npm", "start"]

• Build the Docker image:

1

https://minikube.sigs.k8s.io/docs/start/
https://www.docker.com/products/docker-desktop
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/


docker build -t your-image-name:latest .

• Push the image to a container registry (e.g., Docker Hub):

docker push your-image-name:latest

3. Define Kubernetes Objects

Kubernetes uses YAML files to define resources like Pods, Services, and Deployments.

• Pod: The smallest deployable unit, containing one or more containers.
• Service: Exposes your application to the network.
• Deployment: Manages Pods, ensuring the desired number run and handling updates.

Example Deployment YAML file (my-app-deployment.yaml):

apiVersion: apps/v1

kind: Deployment

metadata:

name: my-app

spec:

replicas: 3 # Number of Pod instances

selector:

matchLabels:

app: my-app

template:

metadata:

labels:

app: my-app

spec:

containers:

- name: my-container

image: your-image-name:latest

4. Deploy the Application

Use the kubectl command-line tool to interact with your cluster and deploy your application.

2



• Apply the YAML file to the cluster:

kubectl apply -f my-app-deployment.yaml

• Verify the deployment:

kubectl get deployments

kubectl get pods

5. Manage the Application

kubectl provides commands to monitor and manage your application:

• Scale the application:

kubectl scale deployment my-app --replicas=5

• Check Pod status:

kubectl get pods

• View logs:

kubectl logs <pod-name>

• Access a container:

kubectl exec -it <pod-name> -- /bin/bash

Key Concepts to Explore Further

• Namespaces: Organize resources and manage access (e.g., kubectl create namespace my-namespace).
• ConfigMaps: Store configuration data separately from the application.
• Secrets: Manage sensitive information like passwords.
• Ingress: Expose services externally with a single entry point.

3



Getting Started Tips

Kubernetes is a powerful but complex system. Start with these basics—setting up a cluster, deploying a
simple application, and using kubectl—then explore advanced features as needed. For hands-on practice,
try tutorials like the Kubernetes Basics on the official site.

With this foundation, you’ll be able to use Kubernetes to deploy and manage containerized applications
effectively!

4

https://kubernetes.io/docs/tutorials/kubernetes-basics/

	How to Use Kubernetes
	1. Set Up a Kubernetes Cluster
	2. Create a Docker Image of Your Application
	3. Define Kubernetes Objects
	4. Deploy the Application
	5. Manage the Application
	Key Concepts to Explore Further
	Getting Started Tips



