
Using epoll in Linux

epoll is a Linux system call designed for efficiently monitoring multiple file descriptors for events, such as
when data is available to read or a socket is ready to write. It is particularly useful in network programming,
where a server might need to handle many connections simultaneously. Compared to older mechanisms
like select or poll, epoll scales better with a large number of file descriptors because it avoids repeatedly
scanning all descriptors for readiness.

Here’s a step-by-step guide to using epoll in Linux, followed by a simple example of a server that accepts
connections and echoes back data.

Steps to Use epoll

1. Create an Epoll Instance

To start using epoll, you need to create an epoll instance, which is represented by a file descriptor. Use the
epoll_create1 system call:

int epoll_fd = epoll_create1(0);

• Parameter: Pass 0 for basic usage (no special flags). Flags like EPOLL_CLOEXEC can be used for advanced
scenarios.

• Return Value: Returns a file descriptor (epoll_fd) on success, or -1 on error (check errno for details).

The older epoll_create function is similar but takes a size hint (now ignored), so epoll_create1 is preferred.

2. Add File Descriptors to Monitor

Use epoll_ctl to register file descriptors (e.g., sockets) with the epoll instance and specify the events you
want to monitor:

struct epoll_event ev;

ev.events = EPOLLIN; // Monitor for readability

ev.data.fd = some_fd; // File descriptor to monitor

epoll_ctl(epoll_fd, EPOLL_CTL_ADD, some_fd, &ev);

• Parameters:

– epoll_fd: The epoll instance file descriptor.
– EPOLL_CTL_ADD: Operation to add a file descriptor.

1

– some_fd: The file descriptor to monitor (e.g., a socket).
– &ev: Pointer to a struct epoll_event defining the events and optional user data.

• Common Events:

– EPOLLIN: Data available to read.
– EPOLLOUT: Ready to write.
– EPOLLERR: Error occurred.
– EPOLLHUP: Hang-up (e.g., connection closed).

• User Data: The data field in struct epoll_event can store a file descriptor (as shown) or other data
(e.g., a pointer) to identify the source when events occur.

3. Wait for Events

Use epoll_wait to block and wait for events on the monitored file descriptors:

struct epoll_event events[MAX_EVENTS];

int nfds = epoll_wait(epoll_fd, events, MAX_EVENTS, -1);

• Parameters:

– epoll_fd: The epoll instance.
– events: Array to store triggered events.
– MAX_EVENTS: Maximum number of events to return (size of the array).
– -1: Timeout in milliseconds (-1 means wait indefinitely; 0 returns immediately).

• Return Value: Number of file descriptors with events (nfds), or -1 on error.

4. Handle Events

Loop through the events returned by epoll_wait and process them:

for (int i = 0; i < nfds; i++) {

if (events[i].events & EPOLLIN) {

// File descriptor events[i].data.fd is readable

}

}

• Check the events field using bitwise operations (e.g., events[i].events & EPOLLIN) to determine the
event type.

• Use events[i].data.fd to identify which file descriptor triggered the event.

2

5. Manage File Descriptors (Optional)

• Remove: Use epoll_ctl with EPOLL_CTL_DEL to stop monitoring a file descriptor:

epoll_ctl(epoll_fd, EPOLL_CTL_DEL, some_fd, NULL);

• Modify: Adjust events with EPOLL_CTL_MOD:

ev.events = EPOLLOUT; // Change to monitor writability

epoll_ctl(epoll_fd, EPOLL_CTL_MOD, some_fd, &ev);

Key Concepts

Level-Triggered vs. Edge-Triggered

• Level-Triggered (Default): epoll notifies repeatedly as long as the condition persists (e.g., data
remains unread). Simpler for most cases.

• Edge-Triggered (EPOLLET): Notifies only once when the state changes (e.g., new data arrives). Re-
quires reading/writing all data until EAGAIN to avoid missing events; more efficient but trickier.

• Set EPOLLET in ev.events (e.g., EPOLLIN | EPOLLET) if using edge-triggered mode.

Non-Blocking I/O

epoll is often paired with non-blocking file descriptors to prevent blocking on I/O operations. Set a socket
to non-blocking mode with:

fcntl(fd, F_SETFL, fcntl(fd, F_GETFL) | O_NONBLOCK);

Example: Simple Echo Server

Below is a basic example of a server that uses epoll to accept connections and echo data back to clients.
It uses level-triggered mode for simplicity.

#include <sys/epoll.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <fcntl.h>

#include <unistd.h>
3

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#define MAX_EVENTS 10

#define PORT 8080

int main() {

// Create listening socket

int listen_fd = socket(AF_INET, SOCK_STREAM, 0);

if (listen_fd == -1) { perror("socket"); exit(1); }

struct sockaddr_in addr = { .sin_family = AF_INET, .sin_addr.s_addr = INADDR_ANY, .sin_port = htons(PORT) };

if (bind(listen_fd, (struct sockaddr*)&addr, sizeof(addr)) == -1) { perror("bind"); exit(1); }

if (listen(listen_fd, 5) == -1) { perror("listen"); exit(1); }

// Set listening socket to non-blocking

fcntl(listen_fd, F_SETFL, fcntl(listen_fd, F_GETFL) | O_NONBLOCK);

// Create epoll instance

int epoll_fd = epoll_create1(0);

if (epoll_fd == -1) { perror("epoll_create1"); exit(1); }

// Add listening socket to epoll

struct epoll_event ev, events[MAX_EVENTS];

ev.events = EPOLLIN; // Level-triggered

ev.data.fd = listen_fd;

if (epoll_ctl(epoll_fd, EPOLL_CTL_ADD, listen_fd, &ev) == -1) { perror("epoll_ctl"); exit(1); }

// Event loop

while (1) {

int nfds = epoll_wait(epoll_fd, events, MAX_EVENTS, -1);

if (nfds == -1) { perror("epoll_wait"); exit(1); }

for (int i = 0; i < nfds; i++) {

int fd = events[i].data.fd;

if (fd == listen_fd) {

// Accept new connection

int client_fd = accept(listen_fd, NULL, NULL);

4

if (client_fd == -1) { perror("accept"); continue; }

// Set client socket to non-blocking

fcntl(client_fd, F_SETFL, fcntl(client_fd, F_GETFL) | O_NONBLOCK);

// Add client socket to epoll

ev.events = EPOLLIN;

ev.data.fd = client_fd;

if (epoll_ctl(epoll_fd, EPOLL_CTL_ADD, client_fd, &ev) == -1) {

perror("epoll_ctl: client_fd");

close(client_fd);

}

} else {

// Handle client data

char buf[1024];

ssize_t n = read(fd, buf, sizeof(buf));

if (n <= 0) {

// Error or EOF: close and remove from epoll

if (n == -1 && (errno == EAGAIN || errno == EWOULDBLOCK)) continue;

close(fd);

epoll_ctl(epoll_fd, EPOLL_CTL_DEL, fd, NULL);

} else {

// Echo data back

write(fd, buf, n); // Note: In real apps, handle partial writes

}

}

}

}

close(epoll_fd);

close(listen_fd);

return 0;

}

Notes on the Example

• Listening Socket: Monitors EPOLLIN to detect new connections.
• Client Sockets: Also monitor EPOLLIN to detect incoming data.
• Simplification: Assumes write completes fully. In production, buffer data and use EPOLLOUT for partial
writes.

5

• Error Handling: Closes sockets on errors or EOF and removes them from epoll.

Summary

epoll provides an efficient way to handle multiple file descriptors in Linux: 1. Create an instance with
epoll_create1. 2. Register file descriptors and events with epoll_ctl. 3. Wait for events with epoll_wait. 4.
Process events in a loop, adjusting monitored events or removing descriptors as needed.

For simple applications, level-triggeredmode is recommended. For high-performance needs, consider edge-
triggered mode with careful handling of all available data. Always pair epoll with non-blocking I/O for best
results.

6

	Using epoll in Linux
	Steps to Use epoll
	1. Create an Epoll Instance
	2. Add File Descriptors to Monitor
	3. Wait for Events
	4. Handle Events
	5. Manage File Descriptors (Optional)

	Key Concepts
	Level-Triggered vs. Edge-Triggered
	Non-Blocking I/O

	Example: Simple Echo Server
	Notes on the Example

	Summary

