
Frontend Engineer Interview

Starting with HTML:

1. Semantic Tags: Understand and use <article>, <section>, <header>, <footer>, <nav>.

2. Forms: Implement validation, handle <input>, <textarea>, <select>, <button>.

3. Tables: Create accessible tables with <table>, <thead>, <tbody>, <tfoot>.

4. Metadata: Use <meta> tags for charset, viewport, and SEO.

5. Links and Anchors: Understand <a> tags, href, target, and download attributes.

6. Media Elements: Use <img>, <video>, <audio> correctly with attributes like src, alt, controls.

7. Lists: Create ordered <ol> and unordered <ul> lists, including nested lists.

8. Headings: Use proper heading hierarchy <h1> to <h6>.

9. Embedding Content: Use <iframe>, <embed>, and <object> for embedding external content.

10. HTML5 APIs: Familiarity with Geolocation, Web Storage, and Fetch API.

Now, CSS:

11. Box Model: Understand margin, padding, border, and how they affect layout.

12. Flexbox: Master alignment, wrapping, and ordering with Flexbox properties.

13. Grid Layout: Create complex layouts using CSS Grid.

14. Responsive Design: Use media queries, viewport meta tag, and responsive images.

15. CSS Preprocessors: Knowledge of Sass, Less, or Stylus syntax and features.

16. CSS-in-JS: Understand frameworks like styled-components or emotion.

17. Animation and Transitions: Implement smooth transitions and keyframe animations.

18. Styling Forms: Customize form elements and improve their appearance.

19. CSS Reset and Normalize: Know when and why to use them.

20. CSS Grid vs Flexbox: Understand the differences and choose the right tool for the job.

JavaScript:

21. ES6+ Features: Use arrow functions, destructuring, spread/rest operators, and template literals.

22. DOM Manipulation: Select elements, modify the DOM, and handle events.

23. Asynchronous JavaScript: Understand Promises, async/await, and fetch API.

1



24. Event Loop: Explain how the event loop works in JavaScript.

25. Closures: Understand and use closures effectively.

26. Prototypal Inheritance: Explain how prototypal inheritance works in JavaScript.

27. Modules: Use ES6 modules with import and export.

28. Error Handling: Use try/catch blocks and understand unhandled promise rejections.

29. JavaScript Performance: Optimize code for better performance.

30. Browser Console: Use browser developer tools for debugging.

Frameworks:

31. React.js: Understand components, JSX, state, props, and hooks.

32. Vue.js: Understand Vue instance, directives, components, and reactivity.

33. Angular: Understand components, services, dependency injection, and routing.

34. State Management: Use Redux, Vuex, or Context API for state management.

35. Routing: Implement client-side routing with React Router, Vue Router, etc.

36. Component-Based Architecture: Understand and implement reusable components.

37. Lifecycle Methods: Know React lifecycle methods or Vue hooks.

38. UI Libraries: Use libraries like Bootstrap, Tailwind, or Material-UI.

39. Testing Frameworks: Write tests with Jest, Jasmine, or Cypress.

40. Build Tools: Use Webpack, Babel, or Parcel for building projects.

Tools and Version Control:

41. Git: Use git for version control, including branching, merging, and rebasing.

42. npm/yarn: Manage project dependencies and scripts.

43. Package.json: Understand scripts, dependencies, and devDependencies.

44. Task Runners: Use Gulp or Grunt for automating tasks.

45. Linting: Use ESLint or Prettier for code quality.

46. Browsersync: Use for live reloading during development.

47. Figma/Adobe XD: Understand design handoff and collaborate with designers.

48. API Integration: Fetch data from RESTful or GraphQL APIs.

2



49. Environment Variables: Manage environment-specific configurations.

50. Continuous Integration: Set up CI/CD pipelines with GitHub Actions or Jenkins.

Performance Optimization:

51. Code Splitting: Implement code splitting with Webpack or dynamic imports.

52. Lazy Loading: Lazy load images, components, and scripts.

53. Minification: Minify CSS, JavaScript, and HTML files.

54. Caching Strategies: Use HTTP caching headers and service workers.

55. Image Optimization: Compress and optimize images for web use.

56. Critical CSS: Inline critical CSS for faster page loads.

57. Web Performance Metrics: Understand Lighthouse, GTmetrix, and PageSpeed Insights.

58. Font Loading: Optimize font loading with WebFont Loader or self-hosting.

59. Avoiding Render-Blocking Resources: Ensure scripts and styles don’t block rendering.

60. Performance Budgets: Set and adhere to performance budgets.

Accessibility:

61. ARIA Roles: Use ARIA roles, states, and properties for better accessibility.

62. Semantic HTML: Choose semantic elements to improve accessibility.

63. Alt Text for Images: Provide meaningful alt text for images.

64. Keyboard Navigation: Ensure the site is navigable with keyboard only.

65. Color Contrast: Use tools to check and improve color contrast.

66. Screen Reader Testing: Test with screen readers like NVDA or VoiceOver.

67. Focus Management: Ensure proper focus management on interactive elements.

68. Accessibility Guidelines: Follow WCAG 2.1 guidelines.

69. Form Accessibility: Use labels, placeholders, and validation correctly.

70. EPub and AODA Compliance: Understand basic compliance standards.

Best Practices:

71. Code Organization: Maintain clean and modular code structures.

72. Documentation: Write clear documentation for components and APIs.

3



73. Cross-Browser Testing: Test on multiple browsers and devices.

74. Progressive Enhancement: Build sites that work for all users, regardless of browser support.

75. Security: Prevent XSS attacks, use Content Security Policy, and secure APIs.

76. SEO Best Practices: Optimize for search engines with meta tags, headings, and alt text.

77. Versioning: Use semantic versioning for libraries and dependencies.

78. Collaboration Tools: Use GitHub, GitLab, or Bitbucket for team collaboration.

79. Code Reviews: Participate in code reviews and provide constructive feedback.

80. Learning Resources: Stay updated with MDN, blogs, and online courses.

Advanced Topics:

81. WebSockets: Implement real-time communication with WebSockets.

82. PWA (Progressive Web Apps): Understand service workers, offline support, and push notifications.

83. Canvas and SVG: Create graphics with Canvas and SVG elements.

84. CSS Grid and Flexbox Layouts: Implement complex layouts with CSS Grid and Flexbox.

85. Custom Elements: Create custom HTML elements with Web Components.

86. Shadow DOM: Understand and use Shadow DOM for encapsulation.

87. CSS Variables: Use custom properties for theming and dynamic styles.

88. JavaScript Design Patterns: Implement design patterns like Singleton, Observer, and Factory.

89. Internationalization (i18n): Implement language support and localization.

90. Performance Profiling: Use tools like Chrome DevTools for profiling JavaScript and DOM performance.

Cross-Disciplinary Skills:

91. User Experience (UX): Understand UX principles and collaborate with UX designers.

92. User Interface (UI): Create visually appealing and user-friendly interfaces.

93. Project Management: Use Agile methodologies, Scrum, or Kanban for project management.

94. Communication Skills: Effectively communicate with team members and stakeholders.

95. Problem-Solving: Approach problems methodically and find optimal solutions.

96. Adaptability: Quickly learn and adapt to new technologies and tools.

97. Team Collaboration: Work well in a team, share knowledge, and mentor others.

4



98. Time Management: Prioritize tasks and manage time effectively.

99. Creativity: Bring creative solutions to design and coding challenges.

100. Passion for Learning: Stay curious and continuously improve your skills.

5


