
iOS Engineer Interview

SwiftUI

1. What is SwiftUI and how does it differ from UIKit?

• SwiftUI is Apple’s modern framework for building user interfaces, offering a declarative syntax

compared to UIKit’s imperative approach. It simplifies UI creation and updates.

2. Explain the concept of declarative UI in SwiftUI.

• Declarative UI describes the desired outcome, not the steps to achieve it. SwiftUI builds and

updates the UI based on the declared state.

3. How do you create a custom view in SwiftUI?

• Create a new struct conforming to the View protocol and define its content within a body property.

4. What are the benefits of using SwiftUI over UIKit?

• Benefits include declarative syntax, easier state management, and unified interface for macOS,

iOS, and other Apple platforms.

5. How do you handle state management in SwiftUI?

• Use @State for local state, @ObservedObject for observable classes, and @EnvironmentObject

for global state.

6. Explain the difference between @State and @Binding.

• @State is used for local state management, while @Binding is used to share state between views.

7. How do you use @EnvironmentObject in SwiftUI?

• @EnvironmentObject is used to access an object that is passed down through the view hierarchy.

8. What is the purpose of @ObservedObject and @StateObject?

• @ObservedObject observes changes in an object, while @StateObject manages the lifecycle of an

object.

9. How do you handle view animations in SwiftUI?

• Use animation modifiers like .animation() or withAnimation {} to animate UI changes.

10. What is the difference between ViewBuilder and @ViewBuilder?

• ViewBuilder is a protocol for building views, while @ViewBuilder is a property wrapper for

functions returning views.

CocoaPods and Dependencies

11. What is CocoaPods and how is it used in iOS development?

• CocoaPods is a dependency manager for Swift and Objective-C Cocoa projects, simplifying library

integration.

12. How do you install CocoaPods?

• Install via Ruby gem: sudo gem install cocoapods.

1



13. What is a Podfile and how do you configure it?

• A Podfile lists project dependencies. Configure by specifying pods and their versions.

14. How do you add a dependency to your project using CocoaPods?

• Add the pod to the Podfile and run pod install.

15. What is the difference between pod install and pod update?

• pod install installs dependencies as specified, while pod update updates to the latest versions.

16. How do you resolve conflicts between different pods?

• Use pod versions that are compatible or specify versions in the Podfile.

17. What is Carthage and how does it differ from CocoaPods?

• Carthage is another dependency manager that builds and links libraries without integrating deeply

into the project.

18. How do you manage different pods for different build configurations?

• Use conditional statements in the Podfile based on build configurations.

19. What is a podspec file and how is it used?

• A podspec file describes a pod’s version, source, dependencies, and other metadata.

20. How do you troubleshoot issues with CocoaPods?

• Check pod versions, clean the project, and consult the CocoaPods issue tracker.

UI Layout

21. How do you create a responsive layout in iOS?

• Use Auto Layout and constraints to make views adapt to different screen sizes.

22. Explain the difference between Stack View and Auto Layout.

• Stack Views simplify laying out views in a row or column, while Auto Layout provides precise

control over positioning.

23. How do you use UIStackView in iOS?

• Add views to a Stack View and configure its axis, distribution, and alignment.

24. What is the difference between frame and bounds in iOS?

• frame defines the view’s position and size relative to its superview, while bounds defines the

view’s own coordinate system.

25. How do you handle different screen sizes and orientations in iOS?

• Use Auto Layout and size classes to adapt the UI to various devices and orientations.

26. Explain how to use Auto Layout constraints in iOS.

• Set constraints between views to define their relationships and positions.

27. What is the difference between leading and trailing in Auto Layout?

• Leading and trailing adapt to text direction, while left and right do not.

28. How do you create a custom layout in iOS?

2



• Subclass UIView and override layoutSubviews() to position subviews manually.

29. Explain how to use UIPinchGestureRecognizer and UIRotationGestureRecognizer.

• Attach gesture recognizers to views and handle their actions in delegate methods.

30. How do you handle layout changes for different device types (iPhone, iPad)?

• Use size classes and adaptive layouts to adjust the UI for different devices.

Swift

31. What are the key differences between Swift and Objective-C?

• Swift is safer, more concise, and supports modern language features like closures and generics.

32. Explain the concept of optionals in Swift.

• Optionals represent values that can be nil, indicating the absence of a value.

33. What is the difference between nil and optional?

• nil is the absence of a value, while an optional can either hold a value or be nil.

34. How do you handle errors in Swift?

• Use do-catch blocks or propagate errors using throw.

35. Explain the difference between let and var.

• let declares constants, while var declares variables that can be modified.

36. What is the difference between a class and a struct in Swift?

• Classes support inheritance and are reference types, while structs are value types.

37. How do you create an enum in Swift?

• Define an enum with enum keyword and cases, which can have associated values.

38. Explain the concept of protocol-oriented programming in Swift.

• Protocols define methods, properties, and requirements that conforming types must implement.

39. What is the difference between a protocol and a delegate?

• Protocols define methods, while delegates implement protocol methods for specific interactions.

40. How do you use generics in Swift?

• Use generic types to write flexible, reusable code that works with any data type.

Networking

41. How do you handle network requests in iOS?

• Use URLSession for network tasks, or libraries like Alamofire for higher-level abstractions.

42. What is URLSession?

• URLSession handles network requests, providing data tasks, upload tasks, and download tasks.

43. How do you handle JSON parsing in Swift?

• Use Codable protocol to decode JSON data into Swift structs or classes.

44. Explain the difference between synchronous and asynchronous requests.

3



• Synchronous requests block the calling thread, while asynchronous requests do not.

45. How do you manage network requests in a background thread?

• Use GCD or OperationQueue to perform requests off the main thread.

46. What is Alamofire and how does it differ from URLSession?

• Alamofire is a third-party networking library that simplifies HTTP requests compared to URLSes-

sion.

47. How do you handle network errors and retries?

• Implement error handling in completion handlers and consider retry mechanisms for transient

errors.

48. Explain how to use URLSessionDataDelegate methods.

• Implement delegate methods to handle request progress, authentication, and more.

49. What is the difference between GET and POST requests?

• GET retrieves data, while POST sends data to a server to create or update resources.

50. How do you secure network communications?

• Use HTTPS to encrypt data in transit and handle certificates properly.

Best Practices and Problem Solving

51. How do you ensure code quality in your projects?

• Use linting tools, write unit tests, and follow coding standards.

52. Explain how you would debug a SwiftUI view.

• Use Xcode’s debugging tools, preview canvas, and print statements to identify issues.

53. What strategies do you use for optimizing app performance?

• Profile the app using Instruments, optimize data fetching, and reduce UI layer counts.

54. How do you handle memory management in Swift?

• Use ARC (Automatic Reference Counting) and avoid retain cycles.

55. Explain how you would approach refactoring legacy code.

• Identify code smells, write tests, and refactor incrementally.

56. What is your experience with CI/CD pipelines?

• Set up pipelines using tools like Jenkins, GitHub Actions, or Fastlane for automated builds and

deployments.

57. How do you stay updated with the latest iOS developments?

• Follow Apple’s developer resources, attend conferences, and participate in developer communities.

58. Explain a time you solved a difficult bug in your project.

• Describe the process of identifying, isolating, and fixing the issue.

59. What is your approach to version control?

• Use Git for branching, committing, and collaborating effectively.

4



60. How do you handle deadlines and pressure in a project?

• Prioritize tasks, communicate effectively, and manage time efficiently.

5


