Java Backend Engineer Interview

Java Core (20 points)

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Understanding of OOP principles: Encapsulation, Inheritance, Polymorphism, Abstraction.

. Generics in Java: Use of type parameters, bounded types, and wildcard generics.

. Multithreading in Java: Creating threads, thread lifecycle, and inter-thread communication.

JVM memory management: Heap, Stack, PermGen/Survivor spaces, garbage collection algorithms.

. Exception handling: Checked and unchecked exceptions, try-catch blocks, finally, and multi-catch.

. Serialization in Java: Serializable interface, custom serialization with writeObject and readObject.

Java Collections Framework: List, Set, Map, Queue interfaces and their implementations.

. Lambda expressions and functional interfaces: Using predicates, consumers, suppliers, and functions.

. Stream API: Intermediate and terminal operations, parallel streams, and stream pipelining.

Reflection API: Accessing classes, methods, and fields at runtime, annotation processing.
Java 10 vs NIO: Differences in file handling, channel-based I/0, and non-blocking I/0.
Java Date and Time API: Working with LocalDate, LocalDateTime, and Duration.

Java Networking: Socket programming, URL connections, and HTTP clients.

Java Security: Cryptography, digital signatures, and secure coding practices.

Java Modules: Understanding of JPMS (Java Platform Module System) and modularity.
Java Enumerations: Use of enums, ordinal values, and custom methods in enums.

Java Annotations: Built-in annotations, custom annotations, and annotation processing.
Java Concurrency Utilities: CountDownLatch, CyclicBarrier, Semaphore, and Exchanger.
Java Memory Leaks: Causes, detection, and prevention strategies.

Java Performance Tuning: JVM options, profiling tools, and memory optimization techniques.

Spring Ecosystem (20 points)

21.

22.

23.

24.

Spring IoC container: Dependency injection, bean lifecycle, and scope.
Spring Boot auto-configuration: How Spring Boot automatically configures beans.
Spring Data JPA: Repository patterns, CRUD operations, and query methods.

Spring Security: Authentication, authorization, and securing REST APIs.



25. Spring MVC: Controller methods, request mapping, and view resolution.

26. Spring Cloud: Service discovery with Eureka, load balancing with Ribbon.

27. Spring AOP: Aspect Oriented Programming, cross-cutting concerns, and advice types.

28. Spring Boot Actuator: Monitoring endpoints, health checks, and metrics collection.

29. Spring Profiles: Environment-specific configurations and profile activation.

30. Spring Boot Starter Dependencies: Use of starters to simplify dependency management.

31. Spring Integration: Integrating different systems, messaging, and adapters.

32. Spring Batch: Batch processing, job scheduling, and step implementations.

33. Spring Cache: Caching strategies, annotations, and cache managers.

34. Spring WebFlux: Reactive programming, non-blocking I1/0, and WebFlux frameworks.

35. Spring Cloud Config: Centralized configuration management for microservices.

36. Spring Cloud Gateway: API gateway patterns, routing, and filtering.

37. Spring Boot Testing: Using @SpringBootTest, MockMvc, and TestRestClient.

38. Spring Data REST: Exposing repositories as RESTful services.

39. Spring Cloud Stream: Integration with message brokers like RabbitMQ and Kafka.

40. Spring Cloud Sleuth: Distributed tracing and logging in microservices.
Microservices Architecture (20 points)

41. Service Discovery: How Eureka, Consul, and Zookeeper work.

42. API Gateway: Patterns, routing, and security in API gateways.

43. Circuit Breaker: Implementing resilience with Hystrix, Resilience4j.

44. Event-Driven Architecture: Event sourcing, message brokers, and event handlers.

45. RESTful API Design: HATEOAS, stateless design, and REST constraints.

46. GraphQL: Implementing GraphQL APIs, schema definitions, and resolvers.

47. Microservices Communication: Synchronous vs asynchronous communication.

48. Saga Pattern: Managing distributed transactions across services.

49. Health Checks: Implementing liveness and readiness probes.

50. Contract First Development: Using Swagger for API contracts.



51. API Versioning: Strategies for versioning RESTful APIs.

52. Rate Limiting: Implementing rate limits to prevent abuse.

53. Circuit Breaker Patterns: Implementing fallbacks and retries.

54. Microservices Deployment: Using Docker, Kubernetes, and cloud platforms.

55. Service Mesh: Understanding Istio, Linkerd, and their benefits.

56. Event Collaboration: Saga vs Choreography patterns.

57. Microservices Security: OAuth2, JWT, and API gateways.

58. Monitoring and Tracing: Tools like Prometheus, Grafana, and Jaeger.

59. Microservices Testing: Integration testing, contract testing, and end-to-end testing.

60. Database per Service: Data management and consistency in microservices.
Databases and Caching (20 points)

61. SQL Joins: Inner, outer, left, right, and cross joins.

62. ACID Properties: Atomicity, Consistency, Isolation, Durability in transactions.

63. NoSQL Databases: Document stores, key-value stores, and graph databases.

64. Redis Caching: In-memory data store, data structures, and persistence options.

65. Memcached vs Redis: Comparing caching solutions.

66. Database Sharding: Horizontal partitioning and load balancing.

67. ORM Frameworks: Hibernate, MyBatis, and JPA specifications.

68. JDBC Connection Pooling: DataSource implementations and connection lifecycle.

69. Full-Text Search: Implementing search in databases like Elasticsearch.

70. Time-Series Databases: InfluxDB, OpenTSDB for time-based data.

71. Transaction Isolation Levels: Read uncommitted, read committed, repeatable read, serializable.

72. Indexing Strategies: B-tree, hash indexes, and composite indexes.

73. Database Replication: Master-slave, master-master setups.

74. Database Backup and Recovery: Strategies for data protection.

75. Database Profiling: Tools like SQL Profiler, slow query logs.

76. NoSQL Consistency Models: Eventual consistency, CAP theorem.



77. Database Migrations: Using Flyway, Liquibase for schema changes.
78. Caching Strategies: Cache-aside, read-through, write-through patterns.
79. Cache Invalidation: Managing cache expiration and invalidation.
80. Database Connection Pooling: HikariCP, Tomcat JDBC pool configurations.
Concurrency and Multithreading (20 points)
81. Thread Lifecycle: New, runnable, running, blocked, waiting, terminated.
82. Synchronization Mechanisms: Locks, synchronized blocks, and intrinsic locks.
83. Reentrant Locks: Benefits over synchronized blocks, fairness, and timeouts.
84. Executor Framework: ThreadPoolExecutor, ExecutorService, and thread pool configurations.
85. Callable vs Runnable: Differences and use cases.
86. Java Memory Model: Visibility, happens-before relationships, and memory consistency.
87. Volatile Keyword: Ensuring visibility of variable changes across threads.
88. Deadlock Prevention: Avoiding and detecting deadlocks.
89. Asynchronous Programming: Using CompletableFuture for non-blocking operations.
90. ScheduledExecutorService: Scheduling tasks with fixed rates and delays.
91. Thread Pools: Fixed, cached, and scheduled thread pools.
92. Lock Striping: Reducing lock contention with striped locks.
93. Read-Write Locks: Allowing multiple readers or a single writer.
94. Wait and Notify Mechanisms: Inter-thread communication using wait/notify.
95. Thread Interruption: Handling interrupts and designing interruptible tasks.
96. Thread-Safe Classes: Implementing thread-safe singleton patterns.
97. Concurrency Utilities: CountDownLatch, CyclicBarrier, Semaphore.
98. Java 84 Concurrency Features: Parallel streams, fork-join framework.
99. Multicore Programming: Challenges and solutions for parallel processing.
100. Thread Dumps and Analysis: Identifying issues with thread dumps.
Web Servers and Load Balancing (20 points)

101. Apache Tomcat Configuration: Setting up connectors, context.xml, and server.xml.



102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

Nginx as Reverse Proxy: Configuring proxy_ pass, upstream servers, and load balancing.
HAProxy for High Availability: Setting up failover and session persistence.

Web Server Security: SSL/TLS configurations, security headers, and firewall rules.

Load Balancing Algorithms: Round Robin, Least Connections, IP Hash.

Server-Side Caching: Using Varnish, Redis, or in-memory caches.

Monitoring Tools: Using Prometheus, Grafana, and New Relic for server monitoring.
Logging in Production: Centralized logging with ELK stack or Graylog.

Horizontal vs Vertical Scaling: Understanding trade-offs and use cases.

Web Server Performance Tuning: Adjusting worker threads, connection timeouts, and buffers.
Reverse Proxy Caching: Configuring cache headers and expiration.

Web Server Load Testing: Tools like Apache JMeter, Gatling for performance testing.
SSL Offloading: Handling SSL/TLS termination at the load balancer.

Web Server Hardening: Security best practices and vulnerability assessments.

Dynamic vs Static Content Serving: Optimizing server configurations.

Web Server Clustering: Setting up clusters for high availability.

Web Server Authentication: Implementing basic, digest, and OAuth authentication.

Web Server Logging Formats: Common log formats and parsing tools.

Web Server Resource Limits: Configuring limits on connections, requests, and bandwidth.

Web Server Backup and Recovery: Strategies for disaster recovery.

CI/CD and DevOps (20 points)

121.

122.

123.

124.

125.

126.

127.

Jenkins Pipeline as Code: Writing Jenkinsfiles for CI/CD pipelines.

Docker Containerization: Dockerfile creation, multi-stage builds, and container orchestration.
Kubernetes Orchestration: Deployments, services, pods, and scaling strategies.

GitOps Principles: Using Git for infrastructure and configuration management.

Maven and Gradle Build Tools: Dependency management, plugins, and build lifecycle.

Unit and Integration Testing: Writing tests with JUnit, Mockito, and TestNG.

Code Coverage Tools: Using Jacoco for measuring code coverage.



128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

Static Code Analysis: Tools like SonarQube for code quality checks.

Infrastructure as Code (IaC): Using Terraform, CloudFormation for infrastructure provisioning.
Blue/Green Deployments: Minimizing downtime during deployments.

Canary Deployments: Gradual rollout of new features.

Automated Testing in CI Pipelines: Integrating tests with build stages.

Environment Management: Using Ansible, Chef, or Puppet for configuration management.
CI/CD Best Practices: Continuous integration, continuous deployment, and continuous delivery.
Rollback Strategies: Implementing automated rollbacks on deployment failures.

Security Scanning: Incorporating security checks like SAST, DAST in pipelines.

CI/CD Pipelines for Microservices: Managing pipelines for multiple services.

Monitoring CI/CD Pipelines: Alerting on pipeline failures and performance issues.

DevOps Tools Ecosystem: Understanding tools like Docker, Kubernetes, Jenkins, Ansible.

CI/CD for Cloud-Native Applications: Deploying applications on cloud platforms.

Design Patterns and Best Practices (20 points)

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

Singleton Pattern: Implementing thread-safe singletons.
Factory Pattern: Creating objects without specifying the exact class.
Strategy Pattern: Encapsulating algorithms and switching between them.

SOLID Principles: Understanding and applying Single Responsibility, Open/Closed, Liskov Substitu-

tion, Interface Segregation, Dependency Inversion.

Dependency Injection: Reducing coupling and increasing code maintainability.

Event Sourcing Pattern: Storing events to reconstruct application state.

CQRS Architecture: Separating command and query responsibilities.

Designing for Scalability: Using horizontal scaling, sharding, and load balancing.

Code Refactoring Techniques: Extracting methods, renaming variables, and simplifying conditionals.
Clean Code Practices: Writing readable, maintainable, and self-documenting code.

Test-Driven Development (TDD): Writing tests before implementation.

Code Versioning: Using Git branching strategies like GitFlow, Trunk-Based Development.



153.

154.

155.

156.

157.

158.

159.

160.

Designing for Maintainability: Using modular design, separation of concerns.
Anti-Patterns to Avoid: God classes, spaghetti code, and tight coupling.

Designing for Security: Implementing least privilege, defense in depth.

Designing for Performance: Optimizing algorithms, reducing I/O operations.

Designing for Reliability: Implementing redundancy, fault tolerance, and error handling.
Designing for Extensibility: Using plugins, extensions, and open APIs.

Designing for Usability: Ensuring APIs are intuitive and well-documented.

Designing for Testability: Writing code that is easy to test and mock.

Security (20 points)

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

OAuth2 and JWT: Implementing token-based authentication.

Role-Based Access Control (RBAC): Assigning roles and permissions to users.
Security Headers: Implementing Content Security Policy, X-Frame-Options.

SQL Injection Prevention: Using prepared statements and parameterized queries.
Cross-Site Scripting (XSS) Protection: Sanitizing inputs and outputs.

Encryption and Decryption: Using AES, RSA for data protection.

Secure Coding Practices: Avoiding common vulnerabilities like buffer overflows.
Implementing Audit Trails: Logging user actions and system events.

Handling Sensitive Data: Storing passwords securely with hashing algorithms.
Compliance with Regulations: GDPR, PCI-DSS, and data protection laws.
Implementing Two-Factor Authentication (2FA): Adding an extra layer of security.
Security Testing: Penetration testing, vulnerability assessments.

Secure Communication Protocols: Implementing SSL/TLS for data encryption.
Secure Session Management: Managing session tokens and timeouts.

Implementing Web Application Firewalls (WAF): Protecting against common attacks.
Security Monitoring and Alerting: Using tools like STEM for threat detection.
Security Best Practices in Microservices: Securing service-to-service communication.

Implementing CAPTCHA for Bot Protection: Preventing automated attacks.



179.

180.

Security in CI/CD Pipelines: Scanning for vulnerabilities during builds.

Implementing Security by Design: Incorporating security from the start of the development process.

Performance Tuning and Optimization (20 points)

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

Profiling Java Applications: Using tools like JProfiler, VisualVM for performance analysis.
Garbage Collection Tuning: Adjusting GC parameters for performance.

Database Query Optimization: Indexing, query rewriting, and using explain plans.
Caching Strategies: Using distributed caches, cache invalidation mechanisms.

Load Testing and Stress Testing: Identifying performance bottlenecks.

Optimizing RESTful APIs: Reducing response times, minimizing data transfer.

Reducing Network Latency: Using CDNs, optimizing API calls.

Connection Pool Sizing: Determining optimal pool sizes for databases and connections.
Monitoring and Alerting Setups: Using Prometheus, Grafana for real-time monitoring.
Identifying and Resolving Bottlenecks: Profiling CPU, memory, and I/O usage.
Optimizing Java Heap Settings: Setting appropriate heap sizes for different environments.
Reducing Garbage Collection Pauses: Using G1GC, ZGC for low-latency applications.
Optimizing Disk I/0O: Using SSDs, RAID configurations, and file system optimizations.
Caching vs Storing: Deciding when to cache data versus storing it in a database.
Optimizing Logging: Reducing logging overhead and managing log volumes.

Optimizing Concurrent Access: Using locks efficiently and minimizing contention.
Profiling Memory Usage: Identifying memory leaks and optimizing object allocations.
Optimizing Thread Pool Sizes: Balancing between too few and too many threads.
Optimizing Data Structures: Choosing the right data structures for specific use cases.

Performance Metrics and KPIs: Defining and tracking key performance indicators for applications.



