
Shared Objects in Multiple Threads

Lesson

The code leads to a weird bug. Sometimes, the bug occurs, and sometimes it does not.

This is because the translate_markdown_file function, and especially the translate_front_matter function,
might be accessing and modifying shared data structures (like dictionaries or lists) without proper syn-
chronization. When multiple threads access and modify the same data concurrently, it can lead to race
conditions. Race conditions occur when the final state of the data depends on the unpredictable order in
which threads execute. This can result in data corruption, unexpected behavior, and the intermittent bugs
you are observing.

To fix this, you should avoid sharing mutable data between threads or use proper synchronization mecha-
nisms, such as locks, to protect shared data. In this case, the front_matter_dict is being modified in place,
which is not thread-safe. The fix is to create a copy of the dictionary before modifying it. This is already
done in the code, but it’s important to understand why it’s necessary.

Context

with concurrent.futures.ThreadPoolExecutor(max_workers=MAX_THREADS) as executor:

futures = []

for filename in changed_files:

input_file = filename

for lang in languages:

print(f"Submitting translation job for {filename} to {lang}...")

future = executor.submit(translate_markdown_file, input_file, os.path.join(f"_posts/{lang}", os.path.basename(filename).replace(".md", f"-{lang}.md")), lang, dry_run)

futures.append(future)

for future in concurrent.futures.as_completed(futures):

try:

future.result()

except Exception as e:

print(f"A thread failed: {e}")

Before

def translate_front_matter(front_matter, target_language, input_file):

print(f" Translating front matter for: {input_file}")

1

if not front_matter:

print(f" No front matter found for: {input_file}")

return ""

try:

front_matter_dict = {}

if front_matter:

front_matter_dict = yaml.safe_load(front_matter)

print(f" Front matter after safe_load: {front_matter_dict}")

if 'title' in front_matter_dict:

print(f" Translating title: {front_matter_dict['title']}")

if not (input_file == 'original/2025-01-11-resume-en.md' and target_language in ['zh', 'fr']):

if isinstance(front_matter_dict['title'], str):

translated_title = translate_text(front_matter_dict['title'], target_language)

if translated_title:

translated_title = translated_title.strip()

if len(translated_title) > 300:

translated_title = translated_title.split('\n')[0]

front_matter_dict['title'] = translated_title

print(f" Translated title to: {translated_title}")

else:

print(f" Title translation failed for: {input_file}")

else:

print(f" Title is not a string, skipping translation for: {input_file}")

else:

print(f" Skipping title translation for {input_file} to {target_language}")

Always set lang to target_language

Determine if the file is a translation

original_lang = 'en' # Default to english

if 'lang' in front_matter_dict:

original_lang = front_matter_dict['lang']

if target_language != original_lang:

front_matter_dict['lang'] = target_language

front_matter_dict['translated'] = True

print(f" Marked as translated to {target_language} for: {input_file}")

else:

front_matter_dict['translated'] = False

print(f" Not marked as translated for: {input_file}")

2

result = "---\n" + yaml.dump(front_matter_dict, allow_unicode=True) + "---"

print(f" Front matter translation complete for: {input_file}")

return result

except yaml.YAMLError as e:

print(f" Error parsing front matter: {e}")

return front_matter

After

def translate_front_matter(front_matter, target_language, input_file):

print(f" Translating front matter for: {input_file}")

if not front_matter:

print(f" No front matter found for: {input_file}")

return ""

try:

front_matter_dict = {}

if front_matter:

front_matter_dict = yaml.safe_load(front_matter)

print(f" Front matter after safe_load: {front_matter_dict}")

front_matter_dict_copy = front_matter_dict.copy()

if 'title' in front_matter_dict_copy:

print(f" Translating title: {front_matter_dict_copy['title']}")

if not (input_file == 'original/2025-01-11-resume-en.md' and target_language in ['zh', 'fr']):

if isinstance(front_matter_dict_copy['title'], str):

translated_title = translate_text(front_matter_dict_copy['title'], target_language)

if translated_title:

translated_title = translated_title.strip()

if len(translated_title) > 300:

translated_title = translated_title.split('\n')[0]

front_matter_dict_copy['title'] = translated_title

print(f" Translated title to: {translated_title}")

else:

print(f" Title translation failed for: {input_file}")

else:

print(f" Title is not a string, skipping translation for: {input_file}")

else:

print(f" Skipping title translation for {input_file} to {target_language}")

3

Always set lang to target_language

front_matter_dict_copy['lang'] = target_language

front_matter_dict_copy['translated'] = True

result = "---\n" + yaml.dump(front_matter_dict_copy, allow_unicode=True) + "---"

print(f" Front matter translation complete for: {input_file}")

return result

except yaml.YAMLError as e:

print(f" Error parsing front matter: {e}")

return front_matter

4

	Shared Objects in Multiple Threads
	Lesson
	Context
	Before
	After

