斯坦福 CS231n 核心主题概览 | AI生成和翻译
Question: What is the course syllabus for Stanford CS231n by Andrej Karpathy?
Answer:
Stanford CS231n,标题为 “Convolutional Neural Networks for Visual Recognition”(现在通常称为 “Deep Learning for Computer Vision”),最初是由 Andrej Karpathy 在其早期开课期间(2015年冬季和2016年冬季学期)设计并担任主讲的。他创作了基础的 lecture notes、assignments 以及大部分沿用至今的课程结构。
来自 Andrej Karpathy 时期(2016年冬季)的经典教学大纲涵盖了大约 20 讲中的以下主要主题:
- Introduction to Computer Vision 与课程概览
- Image Classification(数据驱动方法,k-Nearest Neighbor)
- Linear Classification(score functions,损失函数如 SVM 和 Softmax)
- Optimization(gradient descent,stochastic gradient descent,backpropagation)
- Neural Networks(fully connected networks,activation functions,architectures)
- Training Neural Networks(initialization,regularization,dropout,batch normalization,data augmentation)
- Convolutional Neural Networks (ConvNets)(convolution,pooling,architectures 如 AlexNet,VGG,GoogLeNet,ResNet)
- Understanding and Visualizing ConvNets(saliency maps,gradients,deconvolutions)
- Object Detection(sliding window,region proposals,R-CNN 家族)
- Localization and Segmentation(semantic segmentation,instance segmentation)
- Recurrent Neural Networks (RNNs) 及其应用,如 image captioning
- Advanced topics(transfer learning,efficient convolutions,modern practices)
该课程包括实现这些概念的动手作业(例如:kNN、fully-connected nets、使用 PyTorch/TensorFlow 等框架实现 ConvNets、network visualization)以及一个期末项目。
请注意,当前版本的 CS231n(例如 2025年春季)在 Fei-Fei Li 等讲师的指导下已经有所演进,加入了诸如 generative models、Transformers in vision (ViTs) 和 human-centered AI 等较新的主题,同时保留了 Karpathy 原始设计的核心结构。
Karpathy 时代的原始 lecture notes 仍然公开可用,且仍是该课程资料中被引用最多的版本。
References:
- Original CS231n Course Website (current, with links to past offerings)
- CS231n Lecture Notes (classic version by Andrej Karpathy)
- Winter 2016 Syllabus and Slides
- Andrej Karpathy’s Academic Page mentioning CS231n