DeepSeek R1 | AI生成和翻译

Home 2025.04

DeepSeek R1采用了一种新颖的强化学习方法,显著提升了大型语言模型的推理能力。该技术与传统的基于人类反馈的强化学习在多个关键方面存在差异。

以下是DeepSeek在R1强化学习中使用的技术解析:

1. 纯强化学习实现初始推理能力(DeepSeek-R1-Zero):

2. 多阶段训练增强可读性与通用能力(DeepSeek-R1):

为解决DeepSeek-R1-Zero的局限性(如可读性差和语言混用),DeepSeek-R1采用了更全面的多阶段训练流程:

与传统RLHF的关键差异:

强化学习概念代码示例(简化版):

由于DeepSeek的RL训练过程复杂度高、规模大,很难提供直接可运行的完整代码示例。以下概念性PyTorch风格代码片段展示了GRPO和基于规则奖励的核心思想:

```python import torch import torch.optim as optim from transformers import AutoModelForCausalLM, AutoTokenizer

假设已有预训练语言模型和分词器

model_name = “gpt2” # 可替换为更合适的基础模型 policy_model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) optimizer = optim.AdamW(policy_model.parameters(), lr=5e-6) device = “cuda” if torch.cuda.is_available() else “cpu” policy_model.to(device)

def generate_responses(prompt, num_responses=4, max_length=128): input_tokens = tokenizer(prompt, return_tensors=”pt”).to(device) outputs = policy_model.generate( input_tokens.input_ids, max_length=max_length, num_return_sequences=num_responses, do_sample=True, top_k=50, top_p=0.95, pad_token_id=tokenizer.eos_token_id ) responses = [tokenizer.decode(output, skip_special_tokens=True) for output in outputs] return responses

def calculate_accuracy_reward(response): # 数学问题简化示例:”2+2等于多少?” if “2 + 2” in response and “4” in response: return 1.0 else: return 0.0

def calculate_format_reward(response): if “” in response: return 0.5 else: return 0.0

def calculate_combined_reward(response): accuracy_reward = calculate_accuracy_reward(response) format_reward = calculate_format_reward(response) return accuracy_reward + format_reward

def train_step(prompt, num_samples=4): optimizer.zero_grad() responses = generate_responses(prompt, num_samples=num_samples) rewards = torch.tensor([calculate_combined_reward(resp) for resp in responses]).float().to(device)

# 简化版GRPO更新:激励高奖励响应
best_reward_index = torch.argmax(rewards)
best_response = responses[best_reward_index]
inputs = tokenizer(prompt + best_response, return_tensors="pt").to(device)
outputs = policy_model(**inputs, labels=inputs.input_ids)
loss = outputs.loss
loss.backward()
optimizer.step()
return loss.item(), best_response, rewards.tolist()

训练循环(极度简化)

num_episodes = 10 training_prompts = [“求解:2 + 2 = ?”, “解释重力概念


Back Donate