空手道测试框架架构可视化 | AI生成和翻译
以下是使用 NetworkX 和 Matplotlib 绘制 Karate 测试框架高层架构/流程的独立 Python 脚本。该脚本按角色对组件进行分组(编写、执行、运行时、协议/IO、外部系统和报告),并展示了从特性文件通过引擎到协议和报告的典型流程。
使用说明:
- 执行 pip install networkx matplotlib
- 如需更美观的布局可选择性安装 pygraphviz 或 pydot + graphviz;脚本会自动检测并回退到弹簧布局
代码:
import networkx as nx
import matplotlib.pyplot as plt
# 尝试使用 Graphviz 获得更清晰布局;不可用时回退到弹簧布局
def get_layout(G):
try:
# 尝试 PyGraphviz
from networkx.drawing.nx_agraph import graphviz_layout
return graphviz_layout(G, prog="dot")
except Exception:
try:
# 尝试 pydot
from networkx.drawing.nx_pydot import graphviz_layout
return graphviz_layout(G, prog="dot")
except Exception:
# 回退方案:弹簧布局
return nx.spring_layout(G, k=1.2, seed=42)
G = nx.DiGraph()
# 按类别定义节点
nodes = {
# 编写层
"特性文件 (.feature)": "编写",
"可复用特性 (call/read)": "编写",
"karate-config.js / 属性配置": "编写",
"测试数据 (JSON/CSV)": "编写",
# 执行层
"运行器 (CLI/JUnit5/Maven/Gradle)": "执行",
"并行运行器": "执行",
# 运行时层
"Karate 引擎 (DSL 解释器)": "运行时",
"JS 引擎": "运行时",
"变量/上下文": "运行时",
"断言与匹配器": "运行时",
# 协议/IO层
"HTTP/REST/SOAP/GraphQL": "协议",
"WebSocket": "协议",
"UI 驱动 (web)": "协议",
"Mock 服务": "协议",
# 外部系统
"外部系统/服务": "外部",
# 报告层
"报告 (HTML, JUnit, JSON)": "报告",
"CI/CD": "报告",
}
# 添加带类别属性的节点
for n, cat in nodes.items():
G.add_node(n, category=cat)
# 定义边(u -> v)及可选标签
edges = [
# 编写层到执行层
("特性文件 (.feature)", "运行器 (CLI/JUnit5/Maven/Gradle)", "执行"),
("karate-config.js / 属性配置", "运行器 (CLI/JUnit5/Maven/Gradle)", "配置"),
("测试数据 (JSON/CSV)", "特性文件 (.feature)", "数据驱动"),
("可复用特性 (call/read)", "特性文件 (.feature)", "复用"),
# 执行层到运行时层
("运行器 (CLI/JUnit5/Maven/Gradle)", "并行运行器", "可选"),
("运行器 (CLI/JUnit5/Maven/Gradle)", "Karate 引擎 (DSL 解释器)", "调用"),
("并行运行器", "Karate 引擎 (DSL 解释器)", "并行化"),
# 运行时内部交互
("Karate 引擎 (DSL 解释器)", "JS 引擎", "脚本表达式"),
("Karate 引擎 (DSL 解释器)", "变量/上下文", "状态管理"),
# 引擎到协议层
("Karate 引擎 (DSL 解释器)", "HTTP/REST/SOAP/GraphQL", "调用 API"),
("Karate 引擎 (DSL 解释器)", "WebSocket", "发送/接收"),
("Karate 引擎 (DSL 解释器)", "UI 驱动 (web)", "驱动 UI"),
("Karate 引擎 (DSL 解释器)", "Mock 服务", "启动/桩"),
# 协议层到外部系统
("HTTP/REST/SOAP/GraphQL", "外部系统/服务", "请求"),
("WebSocket", "外部系统/服务", "消息"),
("UI 驱动 (web)", "外部系统/服务", "浏览器/应用"),
("Mock 服务", "外部系统/服务", "模拟"),
# 响应流回引擎
("外部系统/服务", "Karate 引擎 (DSL 解释器)", "响应"),
# 断言与报告
("Karate 引擎 (DSL 解释器)", "断言与匹配器", "验证"),
("断言与匹配器", "报告 (HTML, JUnit, JSON)", "结果"),
("Karate 引擎 (DSL 解释器)", "报告 (HTML, JUnit, JSON)", "运行时日志"),
("报告 (HTML, JUnit, JSON)", "CI/CD", "发布"),
]
# 添加边到图
for u, v, label in edges:
G.add_edge(u, v, label=label)
# 按类别设置颜色
category_colors = {
"编写": "#4C78A8",
"执行": "#F58518",
"运行时": "#B279A2",
"协议": "#54A24B",
"外部": "#9A9A9A",
"报告": "#E45756",
}
# 构建节点颜色列表
node_colors = [category_colors[G.nodes[n]["category"]] for n in G.nodes()]
# 计算布局
pos = get_layout(G)
plt.figure(figsize=(14, 10))
# 绘制节点
nx.draw_networkx_nodes(G, pos, node_color=node_colors, node_size=1600, alpha=0.9, linewidths=1.2, edgecolors="black")
# 绘制边
nx.draw_networkx_edges(G, pos, arrows=True, arrowstyle="-|>", arrowsize=16, width=1.2, connectionstyle="arc3,rad=0.06")
# 绘制标签
nx.draw_networkx_labels(G, pos, font_size=9, font_color="white")
# 绘制部分边标签以减少杂乱
important_edge_labels = {
(u, v): d["label"]
for u, v, d in G.edges(data=True)
if d["label"] in {"执行", "调用", "并行化", "调用 API", "启动/桩", "验证", "结果", "发布"}
}
nx.draw_networkx_edge_labels(G, pos, edge_labels=important_edge_labels, font_size=8, label_pos=0.5, rotate=False)
# 图例
import matplotlib.patches as mpatches
legend_patches = [mpatches.Patch(color=col, label=cat) for cat, col in category_colors.items()]
plt.legend(handles=legend_patches, loc="lower center", ncol=3, bbox_to_anchor=(0.5, -0.05), frameon=False)
plt.title("Karate 测试框架工作原理(高层流程)", fontsize=14)
plt.axis("off")
plt.tight_layout()
plt.show()
该示意图传达的信息:
- 编写层:编写 .feature 文件,可复用其他特性,通过 karate-config 配置,并注入数据
- 执行层:通过 CLI/JUnit5/Maven/Gradle 运行,支持并行执行
- 运行时层:Karate 引擎解释 DSL,使用 JS 引擎处理表达式,并管理场景状态
- 协议/IO层:引擎驱动 HTTP(REST/SOAP/GraphQL)、WebSocket 和 UI(通过 Karate 驱动),还可启动 Mock 服务来桩接依赖项
- 外部系统:真实服务或模拟服务进行响应
- 报告层:断言生成报告(HTML、JUnit XML、JSON),可供 CI/CD 发布
如需针对特定场景定制示意图(如仅限 API 测试,或强调 Mock 或 UI),请告知,我将调整节点/边。