Precise Linear Algebra Pocket Guide | Generated by AI

Home 2025.10

As your engineering-focused tutor, this guide emphasizes verifiable, index-explicit computations for matrices \( A = [a_{ij}]_{i=1}^m, j=1^n \in \mathbb{R}^{m \times n} \) (rows indexed by \( i \), columns by \( j \), 1-based). All steps are shown with indices for clarity; examples annotate entries inline. Review via row reduction and eigenvalue solves on 2×2/3×3 cases.

1. Matrix Operations

Example (2×2 Inverse Annotation): Let \( A = \begin{pmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{pmatrix} \). Then \( A^{-1} = \frac{1}{\det A} \begin{pmatrix} a_{22} & -a_{12} \ -a_{21} & a_{11} \end{pmatrix} \), where \( \det A = a_{11} a_{22} - a_{12} a_{21} \).

2. Determinants

Example (2×2 Cofactors): For above \( A \), \( M_{11} = [a_{22}] \), \( C_{11} = (-1)^{1+1} a_{22} = a_{22} \); \( M_{12} = [a_{21}] \), \( C_{12} = (-1)^{1+2} a_{21} = -a_{21} \); similarly \( C_{21} = -a_{12} \), \( C_{22} = a_{11} \). Thus \( \adj A = \begin{pmatrix} C_{11} & C_{21} \ C_{12} & C_{22} \end{pmatrix} = \begin{pmatrix} a_{22} & -a_{12} \ -a_{21} & a_{11} \end{pmatrix} \).

3. Linear Systems & Gaussian Elimination

4. Vector Spaces

5. Linear Transformations

6. Eigenvalues

7. Inner Products & Orthogonalization

Quick Verification Tip: Always row-reduce [A - λI 0] for eigenspaces; check det via expansion if n≤3.

Linear Algebra Cheat Sheet - Indexed Formulas
Self-Exam 02198 Review


Back

x-ai/grok-4-fast

Donate