多模态多任務評估基準

Home PDF

前言

本文將評估一個語言模型,使用MMLU(Massive Multitask Language Understanding)基準。

MMLU基準是對模型在各種主題上的多任務執行能力的全面測試。它包含多項選擇問題,涵蓋了數學、歷史、法律、醫學等多種領域。

數據集連結:

llama-server

要運行llama-server:

build/bin/llama-server -m models/7B/mistral-7b-instruct-v0.2.Q4_K_M.gguf --port 8080

MMLU基準

這段程序使用三種不同的後端來評估MMLU基準:ollamallama-serverdeepseek

要運行MMLU基準代碼:

import torch
from datasets import load_dataset
import requests
import json
from tqdm import tqdm
import argparse
import os
from openai import OpenAI
from dotenv import load_dotenv
import time
import random

load_dotenv()

# 設置參數解析
parser = argparse.ArgumentParser(description="使用不同後端評估MMLU數據集。")
parser.add_argument("--type", type=str, default="ollama", choices=["ollama", "llama", "deepseek", "gemini", "mistral"], help="後端類型:ollama, llama, deepseek, gemini 或 mistral")
parser.add_argument("--model", type=str, default="", help="模型名稱")

args = parser.parse_args()

# 加載MMLU數據集
subject = "college_computer_science"  # 選擇您的主題
dataset = load_dataset("cais/mmlu", subject, split="test")

# 使用一個例子格式提示
def format_mmlu_prompt(example):
    prompt = f"Question: {example['question']}\n"
    prompt += "Choices:\n"
    for i, choice in enumerate(example['choices']):
        prompt += f"{chr(ord('A') + i)}. {choice}\n"
    prompt += "Give your answer. Just give the choice.\n"
    return prompt

# 如果需要初始化DeepSeek客戶端
def initialize_deepseek_client():
    api_key = os.environ.get("DEEPSEEK_API_KEY")
    if not api_key:
        print("錯誤:DEEPSEEK_API_KEY環境變量未設置。")
        exit()
    return OpenAI(api_key=api_key, base_url="https://api.deepseek.com")

def call_gemini_api(prompt, retries=3, backoff_factor=1):
    gemini_api_key = os.environ.get("GEMINI_API_KEY")
    if not gemini_api_key:
        print("錯誤:GEMINI_API_KEY環境變量未設置。")
        exit()
    url = f"https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent"
    params = {"key": gemini_api_key}
    payload = {"contents": [{"parts": [{"text": prompt}]}]}
    print(f"輸入到Gemini API: {payload}")

    for attempt in range(retries):
        response = requests.post(url, json=payload, params=params)
        response_json = response.json()
        print(response_json)
        if response.status_code == 200:
            return response_json
        elif response.status_code == 429:
            time.sleep(backoff_factor * (2 ** attempt))  # 指數退避
        else:
            raise Exception(f"Gemini API錯誤:{response.status_code} - {response_json}")
    return None

def call_mistral_api(prompt, model="mistral-small-2501", process_response=True):
    api_key = os.environ.get("MISTRAL_API_KEY")
    if not api_key:
        print("錯誤:MISTRAL_API_KEY環境變量未設置。")
        return None

    url = "https://api.mistral.ai/v1/chat/completions"
    headers = {
        "Content-Type": "application/json",
        "Accept": "application/json",
        "Authorization": f"Bearer {api_key}"
    }
    data = {
        "model": model,
        "messages": [
            {
                "role": "user",
                "content": prompt
            }
        ]
    }
    print(f"輸入到Mistral API: {data}")
    print(f"Mistral API URL: {url}")
    print(f"Mistral API Headers: {headers}")
    try:
        response = requests.post(url, headers=headers, json=data)
        response.raise_for_status()
        response_json = response.json()
        print(response_json)
        if response_json and response_json['choices']:
            content = response_json['choices'][0]['message']['content']
            if process_response:
                return process_mistral_response(content)
            else:
                return content
        else:
            print(f"Mistral API錯誤:無效的回應格式:{response_json}")
            return None
    except requests.exceptions.RequestException as e:
        print(f"Mistral API錯誤:{e}")
        stre = f"{e}"
        if '429' in stre:
            print("請求過多,暫停10秒並重試")
            time.sleep(10)
            return call_mistral_api(prompt, model, process_response)

        raise e

import re

def process_ollama_response(response):
    if response.status_code == 200:
        print(f"API輸出: {response.json()}")
        output_text = response.json()["choices"][0]["message"]["content"]
        match = re.search(r"Answer:\s*([A-D])", output_text, re.IGNORECASE)
        if not match:
            match = re.search(r"\*\*Answer\*\*:\s*([A-D])", output_text, re.IGNORECASE)
        if not match:
            match = re.search(r"The correct answer is\s*([A-D])", output_text, re.IGNORECASE)
        if not match:
            match = re.search(r"The correct choice is\s*([A-D])", output_text, re.IGNORECASE)
        if not match:
            match = re.search(r"The correct choice would be\s*([A-D])", output_text, re.IGNORECASE)
        if not match:
            match = re.search(r"The answer is\s*([A-D])", output_text, re.IGNORECASE)
        if not match:
            match = re.search(r"The answer appears to be\s*([A-D])", output_text, re.IGNORECASE)
        if not match:
            match = re.search(r"The correct answer should be\s*([A-D])", output_text, re.IGNORECASE)
        if not match:
            match = re.search(r"The correct answer would be\s*([A-D])", output_text, re.IGNORECASE)
        if match:
            predicted_answer = match.group(1).upper()
        else:
            stripped_output = output_text.strip()
            if len(stripped_output) > 0:
                first_word = stripped_output.split(" ")[0]
                if len(first_word) == 1:
                    predicted_answer = first_word
                else:
                    first_word_comma = stripped_output.split(",")[0]
                    if len(first_word_comma) == 1:
                        predicted_answer = first_word_comma
                    else:
                        first_word_period = stripped_output.split(".")[0]
                        if len(first_word_period) == 1:
                            predicted_answer = first_word_period
                        else:
                            print(f"無法從輸出中提取單字母答案:{output_text},返回隨機答案")
                            predicted_answer = random.choice(["A", "B", "C", "D"])
            else:
                predicted_answer = ""

        return predicted_answer
    else:
        print(f"錯誤:{response.status_code} - {response.text}")
        return ""

def process_llama_response(response):
    if response.status_code == 200:
        output_text = response.json()["choices"][0]["message"]["content"]
        predicted_answer = output_text.strip()[0] if len(output_text.strip()) > 0 else ""
        print(f"API輸出: {output_text}")
        return predicted_answer
    else:
        print(f"錯誤:{response.status_code} - {response.text}")
        return ""

def process_deepseek_response(client, prompt, model="deepseek-chat", retries=3, backoff_factor=1):
    print(f"輸入到Deepseek API: {prompt}")
    for attempt in range(retries):
        try:
            response = client.chat.completions.create(
                model=model,
                messages=[
                    {"role": "user", "content": prompt}
                ],
                max_tokens=100
            )
            if response and response.choices:
                output_text = response.choices[0].message.content.strip()
                predicted_answer = output_text.strip()[0] if len(output_text.strip()) > 0 else ""
                print(f"API輸出: {output_text}")
                return predicted_answer
            else:
                print("錯誤:無API回應。")
                return ""
        except Exception as e:
            if "502" in str(e):
                print(f"單向錯誤(502)期間API呼叫,{backoff_factor * (2 ** attempt)}秒後重試...")
                time.sleep(backoff_factor * (2 ** attempt))
            else:
                print(f"API呼叫期間錯誤:{e}")
                return ""
    return ""

def process_mistral_response(response):
    if response:
        output_text = response.strip()
        predicted_answer = output_text.strip()[0] if len(output_text.strip()) > 0 else ""
        print(f"API輸出: {output_text}")
        return predicted_answer
    else:
        print("錯誤:無Mistral API回應")
        return ""

def process_gemini_response(prompt):
    json_response = call_gemini_api(prompt)
    if not json_response:
        print("在重試後,Gemini API無回應。")
        return ""
    if 'candidates' not in json_response or not json_response['candidates']:
        print("在回應中找不到候選人,重試...")
        json_response = call_gemini_api(prompt)
        print(json_response)
        if not json_response or 'candidates' not in json_response or not json_response['candidates']:
            print("在重試後,回應中找不到候選人。")
            return ""

    first_candidate = json_response['candidates'][0]
    if 'content' in first_candidate and 'parts' in first_candidate['content']:
        first_part = first_candidate['content']['parts'][0]
        if 'text' in first_part:
            output_text = first_part['text']
            predicted_answer = output_text.strip()[0] if len(output_text.strip()) > 0 else ""
            print(f"API輸出: {output_text}")
            return predicted_answer
        else:
            print("回應中找不到文本")
            return ""
    else:
        print("意外的回應格式:缺少內容或部分")
        return ""

def _call_ollama_api(prompt, model):
    url = "http://localhost:11434/v1/chat/completions"
    data = {
        "messages": [{"role": "user", "content": prompt}],
        "model": model,
        "max_tokens": 300
    }
    headers = {"Content-Type": "application/json"}
    print(f"輸入到API: {data}")
    response = requests.post(url, headers=headers, data=json.dumps(data))
    return process_ollama_response(response)

def _call_llama_api(prompt):
    url = "http://localhost:8080/v1/chat/completions"
    data = {
        "messages": [{"role": "user", "content": prompt}]
    }
    headers = {"Content-Type": "application/json"}
    print(f"輸入到API: {data}")
    response = requests.post(url, headers=headers, data=json.dumps(data))
    return process_llama_response(response)

def _get_predicted_answer(args, prompt, client):
    predicted_answer = ""
    if args.type == "ollama":
        predicted_answer = _call_ollama_api(prompt, args.model)
    elif args.type == "llama":
        predicted_answer = _call_llama_api(prompt)
    elif args.type == "deepseek":
        predicted_answer = process_deepseek_response(client, prompt, args.model)
    elif args.type == "gemini":
        predicted_answer = process_gemini_response(prompt)
    elif args.type == "mistral":
        predicted_answer = call_mistral_api(prompt, args.model)
    else:
        raise ValueError("無效的後端類型")
    return predicted_answer

def evaluate_model(args, dataset):
    correct = 0
    total = 0
    client = None
    if args.type == "deepseek":
        client = initialize_deepseek_client()

    if args.model == "":
        if args.type == "ollama":
            args.model = "mistral:7b"
        elif args.type == "deepseek":
            args.model = "deepseek-chat"
        elif args.type == "mistral":
            args.model = "mistral-small-latest"

    for i, example in tqdm(enumerate(dataset), total=len(dataset), desc="評估"):
        prompt = format_mmlu_prompt(example)
        predicted_answer = _get_predicted_answer(args, prompt, client)

        answer_map = {0: "A", 1: "B", 2: "C", 3: "D"}
        ground_truth_answer = answer_map.get(example["answer"], "")
        is_correct = predicted_answer.upper() == ground_truth_answer
        if is_correct:
            correct += 1
        total += 1

        print(f"Question: {example['question']}")
        print(f"Choices: A. {example['choices'][0]}, B. {example['choices'][1]}, C. {example['choices'][2]}, D. {example['choices'][3]}")
        print(f"Predicted Answer: {predicted_answer}, Ground Truth: {ground_truth_answer}, Correct: {is_correct}")
        print("-" * 30)

        if (i+1) % 10 == 0:
            accuracy = correct / total
            print(f"處理了{i+1}/{len(dataset)}。當前準確率:{accuracy:.2%} ({correct}/{total})")

    return correct, total

# 評估迴圈
correct, total = evaluate_model(args, dataset)

# 計算準確率
accuracy = correct / total
print(f"主題: {subject}")
print(f"準確率: {accuracy:.2%} ({correct}/{total})")

結果

零次射評估

模型 類型 主題 準確率
mistral-7b-instruct-v0.2, Q4_K_M macOS m2, 16GB, llama-server MMLU college_computer_science 40.00% (40/100)
Mistral-7B-Instruct-v0.3, Q4_0 macOS m2, 16GB, ollama MMLU college_computer_science 40.00% (40/100)
deepseek v3 (API) API, 2025.1.25 MMLU college_computer_science 78.00% (78/100)
gemini-1.5-flash (API) API, 2025.1.25 MMLU college_computer_science 72.00% (72/100)
deepseek r1 (API) API, 2025.1.26 MMLU college_computer_science 87.14% (61/70)
Mistral Small Latest (API) API, 2025.01.31 MMLU college_computer_science 65.00% (65/100)
Mistral Large Latest (API) API, 2025.01.31 MMLU college_computer_science 73.00% (73/100)
Mistral Small 2501 (API) API, 2025.01.31 MMLU college_computer_science 66.00% (66/100)
Grok 2 Latest API, 2025.02.02 MMLU college_computer_science 72.00% (72/100)

圖表

讓我們根據上表創建一個圖表。

import matplotlib.pyplot as plt
import os

# 模型數據(請替換為您的實際數據)
models = ['mistral-7b-instruct-v0.2 (llama.cpp)', 'Mistral-7B-Instruct-v0.3 (ollama)', 'deepseek v3 (API)', 'gemini-1.5-flash (API)', 'deepseek r1 (API)']
accuracy = [40.00, 40.00, 78.00, 72.00, 87.14]
subject = "college_computer_science"

# 創建條形圖
plt.figure(figsize=(10, 6))
plt.bar(models, accuracy, color=['skyblue', 'lightcoral', 'lightgreen', 'gold', 'lightcoral'])
plt.xlabel('模型')
plt.ylabel('準確率 (%)')
plt.title(f'MMLU基準準確率{subject}')
plt.ylim(0, 100)  # 設置y軸限制0-100
plt.xticks(rotation=45, ha="right")  # 旋轉x軸標籤以提高可讀性
plt.tight_layout()

# 在條形上方添加準確率值
for i, val in enumerate(accuracy):
    plt.text(i, val + 1, f'{val:.2f}%', ha='center', va='bottom')

# 將圖表保存為當前目錄中的JPG文件
plt.savefig(os.path.join(os.path.dirname(__file__), f'mmlu_accuracy_chart.jpg'))
plt.show()

MMLU基準準確率


Back 2025.02.22 Donate