Linear Transformations | Generated by AI

Home PDF

Definition, Examples, Matrix Representation, Kernel, Image, Properties (Injectivity, Surjectivity)

Linear transformations are fundamental in linear algebra, providing a bridge between vector spaces and matrices. This tutorial covers:


1. Definition of a Linear Transformation

A linear transformation (or linear map) between two vector spaces \( V \) and \( W \) over a field \( \mathbb{F} \) (usually \( \mathbb{R} \) or \( \mathbb{C} \)) is a function \( T: V \to W \) that satisfies:

  1. Additivity:
    \[ T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) \quad \forall \mathbf{u}, \mathbf{v} \in V \]
  2. Homogeneity (Scalar Multiplication):
    \[ T(c \mathbf{v}) = c T(\mathbf{v}) \quad \forall c \in \mathbb{F}, \mathbf{v} \in V \]

Key Idea: Linear transformations preserve vector addition and scalar multiplication.


2. Examples of Linear Transformations

(a) Zero Transformation

(b) Identity Transformation

(c) Rotation in \( \mathbb{R}^2 \)

(d) Differentiation (Polynomial Space)

(e) Matrix Multiplication


3. Matrix Representation of Linear Transformations

Every linear transformation \( T: \mathbb{R}^n \to \mathbb{R}^m \) can be represented by an \( m \times n \) matrix \( A \) such that:
\[ T(\mathbf{x}) = A\mathbf{x} \]

How to Find the Matrix \( A \)

  1. Apply \( T \) to the standard basis vectors \( \mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n \) of \( \mathbb{R}^n \).
  2. The columns of \( A \) are \( T(\mathbf{e}_1), T(\mathbf{e}_2), \dots, T(\mathbf{e}_n) \).

Example:
Let \( T: \mathbb{R}^2 \to \mathbb{R}^2 \) be defined by:
\[ T \begin{pmatrix} x \ y \end{pmatrix} = \begin{pmatrix} 2x + y \ x - 3y \end{pmatrix} \]


4. Kernel (Null Space) and Image (Range)

(a) Kernel (Null Space)

The kernel of \( T \) is the set of all vectors in \( V \) that map to \( \mathbf{0} \):
\[ \ker(T) = { \mathbf{v} \in V \mid T(\mathbf{v}) = \mathbf{0} } \]

Properties:

Example:
For \( T(\mathbf{x}) = A\mathbf{x} \) where \( A = \begin{pmatrix} 1 & 2 \ 3 & 6 \end{pmatrix} \),
\[ \ker(T) = \text{Span} \left{ \begin{pmatrix} -2 \ 1 \end{pmatrix} \right} \]

(b) Image (Range)

The image of \( T \) is the set of all outputs in \( W \):
\[ \text{Im}(T) = { T(\mathbf{v}) \mid \mathbf{v} \in V } \]

Properties:

Example:
For \( T(\mathbf{x}) = A\mathbf{x} \) where \( A = \begin{pmatrix} 1 & 0 \ 0 & 1 \ 1 & 1 \end{pmatrix} \),
\[ \text{Im}(T) = \text{Span} \left{ \begin{pmatrix} 1 \ 0 \ 1 \end{pmatrix}, \begin{pmatrix} 0 \ 1 \ 1 \end{pmatrix} \right} \]


5. Properties: Injectivity and Surjectivity

(a) Injectivity (One-to-One)

A linear transformation \( T \) is injective if:
\[ T(\mathbf{u}) = T(\mathbf{v}) \implies \mathbf{u} = \mathbf{v} \]
Test:

(b) Surjectivity (Onto)

A linear transformation \( T \) is surjective if:
\[ \forall \mathbf{w} \in W, \exists \mathbf{v} \in V \text{ such that } T(\mathbf{v}) = \mathbf{w} \]
Test:

(c) Rank-Nullity Theorem

For \( T: V \to W \),
\[ \dim(V) = \dim(\ker(T)) + \dim(\text{Im}(T)) \]

Example:
If \( T: \mathbb{R}^3 \to \mathbb{R}^2 \) has \( \dim(\ker(T)) = 1 \), then \( \dim(\text{Im}(T)) = 2 \).


Summary

Concept Definition Key Property
Linear Transformation \( T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) \) and \( T(c\mathbf{v}) = cT(\mathbf{v}) \) Preserves linear structure
Matrix Representation \( T(\mathbf{x}) = A\mathbf{x} \) where columns of \( A \) are \( T(\mathbf{e}_i) \) Encodes transformation
Kernel \( \ker(T) = { \mathbf{v} \mid T(\mathbf{v}) = \mathbf{0} } \) Measures injectivity
Image \( \text{Im}(T) = { T(\mathbf{v}) \mid \mathbf{v} \in V } \) Measures surjectivity
Injectivity \( \ker(T) = { \mathbf{0} } \) One-to-one
Surjectivity \( \text{Im}(T) = W \) Onto

Practice Problems

  1. Find the matrix representation of \( T(x, y, z) = (2x - y, y + 3z) \).
  2. Determine if \( T(\mathbf{x}) = \begin{pmatrix} 1 & 2 \ 0 & 1 \end{pmatrix} \mathbf{x} \) is injective/surjective.
  3. Compute \( \ker(T) \) and \( \text{Im}(T) \) for \( T(x, y) = (x + y, 2x - y, x) \).

This tutorial covers the core concepts of linear transformations as typically taught in an undergraduate linear algebra course. Let me know if you need further clarification or additional examples!


Back 2025.03.29 Donate