The Kernel of a Linear Transformation | Generated by AI

Home PDF

The kernel of a linear transformation is the set of all input vectors that the transformation maps to the zero vector.

Definition:

If \( T: V \to W \) is a linear transformation between two vector spaces \( V \) and \( W \), then the kernel (or null space) of \( T \) is:

\[ \ker(T) = { v \in V \mid T(v) = 0 } \]

Key Properties:

  1. Subspace: The kernel of a linear transformation is always a subspace of the domain \( V \).
  2. Dimension: The dimension of the kernel is called the nullity of the transformation.
  3. Relation to Injectivity:
    • If \( \ker(T) = {0} \), then \( T \) is injective (one-to-one).
    • If \( \ker(T) \) has dimension greater than zero, then \( T \) is not injective.

Example:

Consider the matrix transformation \( T: \mathbb{R}^3 \to \mathbb{R}^2 \) given by:

\[ T(x, y, z) = (x + y, y + z) \]

Writing this as a matrix,

$$ T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} $$

To find the kernel, solve:

\[ \begin{bmatrix} 1 & 1 & 0 \ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \ y \ z \end{bmatrix} = \begin{bmatrix} 0 \ 0 \end{bmatrix} \]

This gives the system:

\[ x + y = 0 \] \[ y + z = 0 \]

Solving for \( x, y, z \):

\[ x = -y, \quad z = -y \]

Thus, the kernel consists of all vectors of the form:

$$ \ker(T) = \text{span} \left\{ \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} \right\} $$

which is a one-dimensional subspace of \( \mathbb{R}^3 \).

Let me know if you need further clarification!


Back 2025.04.01 Donate