RTX 4070 Ti Practical AI Projects Guide | Generated by AI

Home 2025.09

A 4070 Ti is plenty to learn—and to ship real things. You’ve got ~12 GB VRAM (16 GB if it’s the Ti Super). That means: run most 7–8B LLMs locally (quantized), fine-tune with LoRA/QLoRA, train solid CV models, do diffusion LoRA, audio ASR, and a lot of classic ML.

Here’s a practical menu, no fluff:

What you can run comfortably

“MiniGPT”-style and LLaMA options

Concrete projects (each is a weekend → 2-week scope)

  1. RAG assistant for your own notes/code

    • Stack: transformers, llama.cpp or ollama for local LLM, FAISS for vectors, langchain/llama-index.
    • Steps: build ingestion → retrieval → answer synthesis → evaluation harness (BLEU/ROUGE or custom rubrics).
    • Upgrade: add reranking (bge-reranker-base) and function calling.
  2. QLoRA fine-tune of an 8B model on your domain

    • Stack: transformers, peft, bitsandbytes, FlashAttention if supported.
    • Data: collect 5–50k high-quality instruction pairs from your logs/wiki; validate with a small eval set.
    • Goal: <10 GB VRAM with 4-bit + gradient checkpointing; batch size via gradient accumulation.
  3. Vision: train a lightweight detector

    • Train YOLOv8n/s on a custom dataset (200–5,000 labeled images).
    • Add augmentations, mixed precision, early stopping; export to ONNX/TensorRT.
  4. Diffusion LoRA: your personal style or product shots

    • SD 1.5 LoRA on 20–150 images; use prior-preservation and low-rank (rank 4–16).
    • Deliver a .safetensors LoRA you can share and compose with other prompts.
  5. Audio: domain ASR

    • Fine-tune Whisper-small/medium on your accent/domain meetings.
    • Build a diarization+VAD pipeline; add an LLM post-editor for punctuation and names.
  6. Small language model from scratch (for fundamentals)

    • Implement a tiny Transformer (1–10 M params) on TinyShakespeare or code tokens.
    • Add rotary embedding, ALiBi, KV-cache, causal mask; measure perplexity and throughput.

How to fit in 12–16 GB VRAM

Suggested learning roadmap (4–6 weeks)

Tooling that “just works” on a single GPU

Rough VRAM smell test (helpful rules of thumb)

Example commands to get moving

# LLM inference (ollama)
brew install ollama  # or Linux install script
ollama pull llama3.1:8b-instruct
ollama run llama3.1:8b-instruct
# QLoRA fine-tune (sketch)
pip install transformers peft bitsandbytes datasets accelerate trl
accelerate config
python train_qlora.py \
  --model_name meta-llama/Meta-Llama-3.1-8B-Instruct \
  --dataset your_instructions.jsonl \
  --load_in_4bit --bf16 --gradient_checkpointing \
  --lora_r 16 --lora_alpha 32 --lora_dropout 0.05 \
  --per_device_train_batch_size 1 --gradient_accumulation_steps 16 \
  --max_seq_length 2048 --num_train_epochs 2 \
  --output_dir ./lora-llama3.1-8b
# YOLO quickstart
pip install ultralytics
yolo task=detect mode=train model=yolov8n.pt data=your.yaml epochs=50 imgsz=640
# SD 1.5 LoRA (Diffusers)
pip install diffusers transformers accelerate xformers safetensors
# then follow the diffusers LoRA training script with --gradient_checkpointing

Final tips

If you tell me which path excites you most (RAG, QLoRA, YOLO, diffusion, Whisper, or a VLM demo), I’ll drop a focused, copy-pastable recipe tailored to your 4070 Ti and OS.


Back Donate