RTX 4070 Ti GPT-2 Fine-Tuning Guide | Generated by AI
Setting Up Your Environment
Before training, ensure your NVIDIA RTX 4070 Ti is properly set up. This GPU has 12GB of VRAM, which is more than enough for GPT-2 Small (124M parameters) during fine-tuning. Training from scratch on a massive dataset like OpenWebText is impractical on a single consumer GPU due to time and compute requirements—it would take weeks or months. Instead, focus on fine-tuning the pre-trained model on your own dataset for specific tasks.
1. Install NVIDIA Drivers and CUDA
- Download and install the latest NVIDIA drivers for your RTX 4070 Ti from the official NVIDIA website. Ensure it’s version 535 or higher for full compatibility.
- Install the CUDA Toolkit. The RTX 4070 Ti (compute capability 8.9) supports CUDA 12.x. Recommend CUDA 12.4:
- Download from the NVIDIA CUDA Toolkit archive.
- Follow the installation guide for your OS (Windows/Linux).
- Install cuDNN (CUDA Deep Neural Network library) matching your CUDA version (e.g., cuDNN 8.9 for CUDA 12.4).
- Verify installation:
nvidia-smi # Should show your GPU and CUDA version nvcc --version # Confirms CUDA installation
2. Set Up Python Environment
- Use Python 3.10 or 3.11. Install via Anaconda or Miniconda for easier management.
- Create a virtual environment:
conda create -n gpt2-train python=3.10 conda activate gpt2-train
3. Install Required Libraries
- Install PyTorch with CUDA support. For CUDA 12.4:
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124Verify:
python -c "import torch; print(torch.cuda.is_available())" # Should return True - Install Hugging Face libraries and others:
pip install transformers datasets accelerate sentencepiece pandas tqdm
Preparing Your Dataset
- Choose or prepare a text dataset (e.g., a .txt file with one sample per line or a CSV with a ‘text’ column).
- For example, use a public dataset from Hugging Face Datasets:
from datasets import load_dataset dataset = load_dataset("bookcorpus") # Or your custom dataset: load_dataset("text", data_files="your_data.txt") - Split into train/test if needed:
dataset = dataset["train"].train_test_split(test_size=0.1)
Fine-Tuning GPT-2 Small
Use the Hugging Face Transformers library for simplicity. Here’s a complete script for causal language modeling (predicting the next token).
Script Example
Save this as train_gpt2.py and run with python train_gpt2.py.
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer, TrainingArguments, DataCollatorForLanguageModeling
from datasets import load_dataset
# Load tokenizer and model (GPT-2 Small)
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
tokenizer.pad_token = tokenizer.eos_token # Set padding token
model = GPT2LMHeadModel.from_pretrained("gpt2")
# Load and preprocess dataset (replace with your dataset)
dataset = load_dataset("bookcorpus")
dataset = dataset["train"].train_test_split(test_size=0.1)
def preprocess(examples):
return tokenizer(examples["text"], truncation=True, max_length=512, padding="max_length")
tokenized_dataset = dataset.map(preprocess, batched=True, remove_columns=["text"])
# Data collator for language modeling
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
# Training arguments (optimized for single GPU)
training_args = TrainingArguments(
output_dir="./gpt2-finetuned",
evaluation_strategy="epoch",
learning_rate=5e-5,
per_device_train_batch_size=4, # Adjust based on VRAM; start low to avoid OOM
per_device_eval_batch_size=4,
num_train_epochs=3, # Adjust as needed
weight_decay=0.01,
fp16=True, # Mixed precision for faster training and less VRAM
gradient_accumulation_steps=4, # Effective batch size = batch_size * accumulation_steps
save_steps=1000,
logging_steps=500,
report_to="none", # Or "wandb" for tracking
)
# Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset["train"],
eval_dataset=tokenized_dataset["test"],
data_collator=data_collator,
)
# Train
trainer.train()
# Save the model
trainer.save_model("./gpt2-finetuned")
Running the Training
- Monitor GPU usage with
nvidia-smiin another terminal. - If you hit out-of-memory (OOM) errors:
- Reduce
per_device_train_batch_sizeto 2 or 1. - Increase
gradient_accumulation_stepsto maintain effective batch size. - Use a smaller max_length (e.g., 256 instead of 512).
- Reduce
- Training time: On a 4070 Ti, for a medium-sized dataset (e.g., 100k samples), expect 1-5 hours per epoch depending on batch size.
Evaluation and Inference
After training:
from transformers import pipeline
generator = pipeline("text-generation", model="./gpt2-finetuned", device=0) # device=0 for GPU
output = generator("Your prompt here", max_length=50, num_return_sequences=1)
print(output)
- Evaluate perplexity (lower is better):
import math eval_results = trainer.evaluate() perplexity = math.exp(eval_results["eval_loss"]) print(f"Perplexity: {perplexity}")
Tips and Troubleshooting
- Use mixed precision (
fp16=True) to save VRAM and speed up training. - If training from scratch (not recommended): Implement a custom transformer architecture (e.g., via NanoGPT or similar repos) and use a huge dataset, but expect very long runtimes.
- For larger datasets, use distributed training if you have multiple GPUs, but that’s beyond a single 4070 Ti.
- Common issues: If PyTorch doesn’t detect the GPU, reinstall drivers/CUDA. Ensure no other processes are using the GPU.
References
- Fine-Tuning GPT-2: A Practical Guide
- Training GPT-2 From Scratch: A Step-by-Step Guide
- How To Train Your Own GenAI Model
- How To Make Custom AI-Generated Text With GPT-2
- RTX 4070 CUDA version
- Geforce RTX 4070 Ti Super CUDA support for Deep Learning
- CUDA compatibility with RTX 4070