RTX 4070 Ti GPT-2 Fine-Tuning Guide | Generated by AI

Home 2025.11

Setting Up Your Environment

Before training, ensure your NVIDIA RTX 4070 Ti is properly set up. This GPU has 12GB of VRAM, which is more than enough for GPT-2 Small (124M parameters) during fine-tuning. Training from scratch on a massive dataset like OpenWebText is impractical on a single consumer GPU due to time and compute requirements—it would take weeks or months. Instead, focus on fine-tuning the pre-trained model on your own dataset for specific tasks.

1. Install NVIDIA Drivers and CUDA

2. Set Up Python Environment

3. Install Required Libraries

Preparing Your Dataset

Fine-Tuning GPT-2 Small

Use the Hugging Face Transformers library for simplicity. Here’s a complete script for causal language modeling (predicting the next token).

Script Example

Save this as train_gpt2.py and run with python train_gpt2.py.

import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer, TrainingArguments, DataCollatorForLanguageModeling
from datasets import load_dataset

# Load tokenizer and model (GPT-2 Small)
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
tokenizer.pad_token = tokenizer.eos_token  # Set padding token
model = GPT2LMHeadModel.from_pretrained("gpt2")

# Load and preprocess dataset (replace with your dataset)
dataset = load_dataset("bookcorpus")
dataset = dataset["train"].train_test_split(test_size=0.1)

def preprocess(examples):
    return tokenizer(examples["text"], truncation=True, max_length=512, padding="max_length")

tokenized_dataset = dataset.map(preprocess, batched=True, remove_columns=["text"])

# Data collator for language modeling
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)

# Training arguments (optimized for single GPU)
training_args = TrainingArguments(
    output_dir="./gpt2-finetuned",
    evaluation_strategy="epoch",
    learning_rate=5e-5,
    per_device_train_batch_size=4,  # Adjust based on VRAM; start low to avoid OOM
    per_device_eval_batch_size=4,
    num_train_epochs=3,  # Adjust as needed
    weight_decay=0.01,
    fp16=True,  # Mixed precision for faster training and less VRAM
    gradient_accumulation_steps=4,  # Effective batch size = batch_size * accumulation_steps
    save_steps=1000,
    logging_steps=500,
    report_to="none",  # Or "wandb" for tracking
)

# Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_dataset["train"],
    eval_dataset=tokenized_dataset["test"],
    data_collator=data_collator,
)

# Train
trainer.train()

# Save the model
trainer.save_model("./gpt2-finetuned")

Running the Training

Evaluation and Inference

After training:

from transformers import pipeline

generator = pipeline("text-generation", model="./gpt2-finetuned", device=0)  # device=0 for GPU
output = generator("Your prompt here", max_length=50, num_return_sequences=1)
print(output)

Tips and Troubleshooting

References


Back

x-ai/grok-4-fast

Donate